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Summary

Sampling from high-dimensional probability distributions is a fundamental challenge
in computational mathematics and data science. It is often hindered by the curse
of dimensionality (CoD), leading to prohibitive computational and statistical
complexity. This thesis introduces and rigorously analyzes the localization method,
which exploits sparse dependency structures to develop samplers whose complexity
depends only mildly on the ambient dimension.

We begin by formalizing localized distributions as Markov random fields on
graphs with polynomially growing neighborhood volumes. To quantify locality, we
develop the marginal Stein’s method, a novel analytical framework that (1) yields
a dimension-independent marginal transport inequality, which bounds marginal
1-Wasserstein distances by local score differences; and (2) establishes exponential
decay of correlations between distant components.

Building on this theory, we propose a general localization framework that
constructs localized samplers by combining local samplers for the marginals. We
study two examples: (1) We apply the MALA-within-Gibbs sampler to an image
deblurring problem with smooth approximation, prove that its smoothing error
is independent of total dimension, and demonstrate substantial speed-ups via
local and parallel implementation. (2) We introduce localized diffusion models,
where a localized score function is learned and used. We prove that localization
can circumvent CoD with only an exponentially decaying error. We show both
theoretically and numerically that a moderate localization radius can balance the

statistical and localization error to achieve a better overall performance.

vi
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Chapter 1

Introduction

This thesis studies the localization method for sampling from high-dimensional
probability distributions. Sampling in high dimensions is a fundamental problem
in computational mathematics, with a wide range of applications in data science,
Bayesian statistics, and machine learning. However, it poses computational chal-
lenges due to the curse of dimensionality (CoD). This underscores the importance
of better understanding and exploiting low-dimensional structures in the target
distributions. In this thesis, we study the locality structure, which captures sparse
dependencies between model components. We propose the localization method
to exploit the locality structure for developing efficient sampling algorithms in
high dimensions. This thesis aims to provide a comprehensive study on both the
theoretical and algorithmic aspects of the localization method in sampling.

We introduce the marginal Stein’s method, a novel analytical framework for
quantifying the effects of locality in high-dimensional distributions. Leveraging
this method, we derive a marginal transport inequality and prove that distributions
with a locality structure exhibit exponential decay of correlations. We also discuss a
Langevin semigroup interpretation of the method, which presents its own theoretical
interest. In the algorithmic aspect, we discuss the general principle of localized
sampling, which effectively reduces a high-dimensional sampling problem to a
collection of low-dimensional subproblems. To illustrate the approach, we present
in detail the MALA-within-Gibbs sampler and the localized diffusion models. The
theoretical and empirical investigations validate the effectiveness of the localization

method in high-dimensional sampling problem:s.



1.1 Motivation

Sampling from high-dimensional distributions is a fundamental challenge in compu-
tational mathematics and data science. Denote 7 € P(RY) as the target distribution,
where d > 1 is the dimension of the state space. The sampling task is to draw

samples

This task has many scientific and engineering applications, including uncertainty
quantification [107, 50|, data assimilation [74, 93], Bayesian inference [106, 13],
statistical physics [10, 11], and machine learning [59, 67, 61].

One of the central challenges in sampling is high dimensionality, which may arise
from several sources: (i) the large number of model parameters (e.g., the neural
networks); (ii) the large data size; (iii) discretization of continuous models; (iv)
large and complex systems (e.g., the climate models). Sampling in high dimensions
is often hindered by the curse of dimensionality (CoD) [59], which refers to the
general phenomenon where the computational or sample complexity of an algorithm
grows exponentially with the dimension of the problem. This makes many standard
sampling methods difficult to scale to high dimensions.

To mitigate the CoD, it is crucial to understand and exploit low-dimensional
structures in the target distributions. Manifold hypothesis [45] is one of the
widely studied structures, which assumes that the data lies on a low-dimensional
manifold. Many dimension reduction methods in sampling are based on this
structure, e.g. stochastic spectral methods [79], likelihood-informed subspace (LIS)
method [34], Manifold Metropolis-adjusted Langevin Algorithm (MMALA) [51],
and variational autoencoders (VAEs) [67].

While manifold hypothesis can cover many applications, there are still important
cases left open. A large class of high-dimensional distributions are those with locality
structure, which captures sparse dependencies between model components [49, 58,
37, 110]. Such sparse dependencies can be modelled by an Markov random field,
also known as undirected graphical model [24, 69]. It introduces an undirected graph
G = (V,E) to represent the dependencies between model components. Each edge
in G encodes a direct dependency between two components. Or equivalently, two

components that are not connected by an edge in G are conditionally independent,



i.e. let (X, )uev be the Markov random field labelled by the vertices in V, then
X L Xy | X\ (uy,  V(w,v) € E. (1.1.1)

Consequently, a sparse graph G indicates that most components only depend
directly on a small subset of others. This sparsity reflects a certain low-dimensional
structure, which can be leveraged to mitigate the CoD in sampling. In recent years,
this structure has attracted a growing interest, with many new methods developed
for efficient sampling [121, 81, 110, 57]. In this thesis, we refer to these methods as
localization methods, which essentially turn a high-dimensional sampling problem
into a series of lower-dimensional problems in an exact or approximate manner by
exploiting the locality structure.

However, despite recent advances, the theoretical understanding of these methods
remains limited. Most existing approaches are ad hoc, and often developed without
rigorous guarantees. This thesis aims to fill this gap by developing a theoretical
framework to analyze the locality structure and the localization method in sampling,
which provides the foundation for the design and analysis of localized samplers in

high dimensions. We will focus on two main questions:

Question 1. How to relate the locality structure to quantitative properties of the

target distribution?

Question 2. How to exploit the locality structure to develop efficient sampling

algorithms in high dimensions?

1.2 Literature review

1.2.1 Dimension reduction in sampling

Dimension reduction is the common strategy to mitigate the CoD in sampling. One
class of methods seeks a low-dimensional subspace that captures the most important
directions along which the distribution or the likelihood changes most significantly.
These methods include likelihood-informed subspace (LIS) method [34], active
subspace method [28], or certified dimension reduction [120]. For instance, in LIS,
the subspace can be identified using the leading eigenvectors of a Gram matrix of

the gradient of the log-likelihood function, i.e.

H=E,.. [Vlogl(z)(Vlogl(z))"].

3



These methods are among the most widely applied dimension reduction methods in
sampling, due to their low computational cost, simple implementation, and certified
approximation error [32, 35, 120].

There are also other methods based on the low-dimensional subspace or man-
ifold. [79] proposes to use spectral methods to find reduced representation of
the parameters using polynomial chaos expansion. [51] proposes the Riemann-
manifold Hamiltonian Monte Carlo (RMHMC) and Manifold Metropolis-Adjusted
Langevin Algorithm (MMALA), which exploit the Riemannian geometry to im-
prove the sampling efficiency. [29] proposes the preconditioned Crank-Nicolson
(pCN) sampler, which avoids the curse of dimensionality by operating directly in
the infinite-dimensional setting. Modern generative models, such as variational
autoencoders (VAEs) [67], generative adversarial networks (GANs) [54], and latent
diffusion models [97] all leverage certain low-dimensional latent structures.

While these concepts of low effective dimension can cover many applications,
there are still important cases left open. One large class of high-dimensional
distributions are those with locality structure. In recent years, there has been
a fast growing interest in sampling methods that leverage locality structures
[121, 81, 110, 57]. [81] propose to apply the localization technique in Markov
chain Monte Carlo (MCMC) and introduces a localized Metropolis-within-Gibbs
sampler. [110] extends this idea and develops the MALA-within-Gibbs sampler,
which is proven to admit a dimension independent convergence rate. Beyond
MCMC, [121] proposes message passing Stein variational gradient descent. It finds
the descent direction coordinate-wisely, and reduces the degeneracy issue of kernel
methods in high dimensions. [57] proposes a localized version of the Schrodinger
Bridge (SB) sampler [55], which replaces a single high-dimensional SB problem
by d low-dimensional SB problems, avoiding the exponential dependence of the
sample complexity on the dimension. Detailed discussions on these methods are

presented in Chapters 4 and 5.

1.2.2 Markov random fields

In probability and physics, locality structure is often modelled by Markov random
fields (MRFs), also known as Markov network or undirected graphical models
[24, 118, 69]. The concept of MRFs came from attempts to generalize the seminal
Ising model [65] to more general settings. Mathematical foundation of MRF's is
established in the 1970s [25, 1, 91]. A remarkable result is the Hammersley-Clifford

4



theorem proved by Hammersley and Clifford in an unpublished manuscript [25],
which states the equivalence between MRF's and Gibbs random fields, whose density

can be factorized over the cliques of a graph (i.e. , c.f. Section 1.5.2):

m(z) o | [ ¢clae).
ceC

where C denotes the collection of cliques in the graph, x¢ is the restriction of x
to the vertices in C, and ¢¢ is the clique potential. This factorization is known as
clique factorization. Also remarkable is the earlier work of Dobrushin [39], Lanford
and Ruelle [73] on the existence and uniqueness of Gibbs measures. In particular, it
is guaranteed by the renowned Dobrushin condition on the conditional distributions
[39]. More interesting results on MRF's are documented in [66, 118, 69].

Exponential decay of correlations is an important property of MRFs in the high-
temperature or weakly-coupled regime, which states that the correlations between
different components decay exponentially with their distance. A vast literature
in statistical physics and probability theory has been devoted to establishing this
property under different conditions [71, 40, 70, 41]. It has also been studied in
different contexts due to its broad range of applications.

A basic formulation of exponential decay of correlations can be cast in a linear
algebraic form [38, 6]. Let A € R?? be a banded and positive matrix, i.e. A(7, ) = 0
if |i — j| > B and mI < A < M1 for some 0 < m < M < oo. Then

A7 (i, )| S AT

for some A € (0,1). In probability language, this means if the precision matrix A of
a Gaussian distribution is banded, then the covariance matrix A~! has exponentially
decaying properties.

In quantum mechanics, the exponential decay of correlations are abstracted
as the nearsightedness principle [68], which states the properties of a quantum
system are primarily determined by local interactions and are insensitive to distant
perturbations. The principle can be formalized as the exponential decay of the

density operator p(r,r’) w.r.t. the physical distance ||r — /|| [68, 53, 7], i.e.
p(r, 7)| S exp (—aflr —7']]).

This enables efficient sparse approximation of p, which can be regarded as the



quantum version of localization of distributions.

1.2.3 Localization method

Due to the ubiquitous presence of locality structures, various localization methods
has been developed in different fields, including numerical linear algebra [6, 99],
spatial statistics [8, 112, 37], data assimilation [63, 58, 92] etc. See [60] for a
comprehensive review on more applications in physics, biology, and data science.
In numerical linear algebra, the incomplete Cholesky preconditioners [26] are
developed for solving large block tridiagonal linear systems. The preconditioner is
taken as a banded matrix approximation of the inverse of target tridiagonal matrix.
Similar to it is the sparse Cholesky factorization [99], where it uses a KL loss to

approximate the Cholesky factorization subject to a sparsity pattern S C [d] x [d]:

L = arg min KL (N(o, O)[IN(0, (ﬁﬁT)-l)) .
LeS
Here § = {L € R™?:V(i,j) ¢ S = L;; = 0}. The computational cost is signifi-
cantly reduced, achieving nearly linear scaling in space complexity. Localization
trick is also used in computation of matrix functions f(A) [6]. A popular approach

is Chebyshev polynomial approximation (suppose spec(A) C [—1,1])

N
FA)~ PalA) 1= 3 en(/)Tk(A),
k=0
where T}, is the k-th Chebyshev polynomial. When A € R%*? is banded, the
computational cost of Py(A) can be reduced to O(d). This is a typical linear
scaling method in electronic structure computation [53]. For more discussions on
localization methods in numerical linear algebra, we refer to [6].
In spatial statistics, the Vecchia approzimation [112] proposes to approximate

Gaussian processes by removing conditioners at large distances, i.e.

d—1 d—1
7(X0) [ [ r(Xen [ Xa) = 7(X0) [ [ (K| X i)
=1 1=1

where N1 N [i] only contains a small subset of preceding points, thus largely
reduces the complexity of sampling. Various extensions have been proposed based

on the nearest-neighbor approximation idea, see a brief review in [37]. It is also



pointed out in [99] that the Vecchia approximation can be interpreted as a localized
Cholesky decomposition.

In data assimilation, localization methods [63, 58] are introduced to mitigate
spurious long-range correlations arising from small ensemble sizes in the ensemble
Kalman filter. For instance, the covariance localization artificially removes or

dampens long-range correlations in the ensemble covariance C , Le.
Cloe = Vo O, \Ilwzqu_]')?

where o denotes the Hadamard product and ¢ : N — R, is a rapidly decaying
function. Such localization methods have been shown to effectively reduce sampling

errors and improve filter accuracy [63, 58, 92].

1.2.4 Other related works
Stein’s method

Stein’s method is a useful approach for quantifying distances between probability
distributions. First developed in [104] for Gaussian approximation, it has been
extended to various distributions, including Poisson [17], binomial [105], and
high dimensional settings [96, 23]. We refer to Stein’s monograph [105] for a

comprehensive review.

Analysis of diffusion models

Since the introduction of diffusion models (DMs) [101, 61, 102], there has been a
surge of interest in understanding their theoretical properties. Analysis of localized
diffusion models in Chapter 6 is built on two main lines of research: the convergence
of DMs and the statistical analysis of DMs. A comprehensive review of all related
work is beyond the scope of this thesis; we refer to [19, 47] for an in-depth overview.

The convergence of DMs considers error bounds of the sampled distribution
given the learned score function. Early work [75] provides a TV guarantee by
assuming a log-Sobolev inequality. Later, by using Girsanov theorem, this condition
is relaxed to bounded moment conditions [22, 16]. A growing body of work is trying
to further relax assumptions and improve error bounds. For instance, [5] proves
a linear-in-dimension bound under the KL divergence, [27] uses a relative score

approach and derives bounds without early stopping. [90] considers the manifold



data, and improves the bound of the discretization error to scale linearly with the
manifold dimension.

The statistical analysis of DMs essentially studies the sample complexity of
estimating the score function. [84, 117] prove that the diffusion model reaches the
minimax rate for distribution estimation. To avoid the CoD, [84, 18] considers linear
subspace data, and later [109, 2] extends it to general manifold data. Recently, [119]
relaxes the manifold assumption, and improves the ambient dimension dependency
in the generalization bound. Other types of low-dimensional structures are also
considered. [100] considers certain Gaussian mixtures, and shows that the sample
complexity does not depend exponentially on the dimension. [47] further extends
it to general Gaussian mixtures with edited diffusion models.

A recent work [80] considers similar settings as ours. They apply the diffusion
models for high-dimensional graphical models. Inspired by variational inference
denoising algorithms, they design a residual network to efficiently approximate the
score function, and prove that its sample complexity does not suffer from CoD.
But their result depends on an explicit solution of the denoising algorithms, and
only applies to Ising-type distributions. Our localized diffusion model, however,

applies to general high-dimensional graphical models.

1.3 Contributions

The main contributions of this thesis are twofold: (i) theoretical development
of the marginal Stein’s method, which provides a quantitative analysis method
for the locality structure and localization method in sampling; (ii) algorithmic
development of localized samplers, which reduces a high-dimensional sampling
problem to a collection of low-dimensional subproblems; this includes two case
studies: an application of the MALA-within-Gibbs sampler adapted to an image
deblurring problem, and the design and analysis of localized diffusion models.

For the theoretical aspect, we develop the marginal Stein’s method, a novel
analysis method for quantifying the effects of locality in high-dimensional distribu-
tions. The method provides an approach to translate the structral assumptions of
the target distribution into quantitative properties.

Specifically, we define (s, v)-local graph G = (V,E) that has a controlled growth
rate of neighborhood sizes: for any i € V, denote N as the set of vertices that

are within distance r of i, then |[N]| < 14 sr”. We prove that such structural



assumption leads to many interesting properties of Markov random fields that are

associated with such local graphs. These include

e marginal transport inequality (Theorem 3.3):

max Wi (m;, ) < ¢ - max ||V,logn’ — V,log , 1.3.1
el 1( i) < e IV; log j 108 ||L1(7T) ( )
which provides a refined control of the 1-Wasserstein distance between marginal

distributions m;, 7}, and here ¢,/ is a dimension-independent constant;

e cxponential decay of correlations (Theorem 3.5):

|Covrr (f (i), 9(25))| < exp (—¢xda (i, 7)), (1.3.2)

which states that the correlations between different components x;, x; decay

exponentially with their distance dg(7, 7).

Some generalizations of the above results are discussed for application purposes.
We also discuss technical aspects of the method. We interpret the marginal Stein’s
method from a Langevin semigroup perspective (Theorem 3.8), which presents its
own theoretical interest.

For the numerical aspect, we propose a framework to localize existing samplers,
that is, to build samplers by combining local samplers for the marginals (see
Chapter 4). This effectively reduces a high-dimensional sampling problem to a
collection of low-dimensional subproblems. The resulting localized sampler is
essentially a Gibbs-type sampler that samples each component X; conditionally on

its neighbors Xy in the locality structure, i.e.

P°(z,y) = H Pi(zi, yi | znr). (1.3.3)
1€[b]

Here P; are local transition kernels that update the component z; to y; conditioned
on its r-neighbors zxr = {z; : dg(i,7) < 7} (see (2.1.2)). The validity of such
localization is supported by exponential decay of correlations (1.3.2). It ensures
that the localization error introduced by ignoring distant components is typically
exponentially small in r, which is in general much smaller than the statistical error
when learning or sampling with a high-dimensional sampler. The advantanges of

the localized sampler include:



e Localized and parallelable. Localized implementation reduces the computa-

tional cost, and parallelization allows for faster sampling.

o Reduced statistical complexity. In many generative tasks, the sampler should
be learned or partially learned from data. Learning localized samplers can

circumvent the CoD due to its intrinsic low-dimensional nature.

e Controlled localization error. The localization error can be controlled using

the marginal Stein’s method.
We study in detail two concrete examples of localized samplers:

o MALA-within-Gibbs (Chapter 5), which localizes the classical Metropolis-
adjusted Langevin algorithm (MALA). We apply this method to an image
deblurring problem with smooth approximation. We prove that the approxi-
mation error is dimension independent by the marginal tranport inequality
(1.3.1). We also show how to implement MALA-within-Gibbs in a localized

and parallelized manner, which significantly accelerates the sampling process.

e localized diffusion models (Chapter 6), which localizes the modern score-based
diffusion generative models. We propose to use localized score matching to
train the score function in diffusion models within a localized hypothesis space.
We prove that such localization enables diffusion models to circumvent CoD),
at the price of additional localization error. We show both theoretically and
numerically that a moderate localization radius can balance the statistical
and localization error, leading to a better overall performance. The local-
ized structure also facilitates parallel training of diffusion models, making it

potentially more efficient for large-scale applications.

1.4 Thesis outline

The structure of the thesis is outlined in Figure 1.1. In Chapter 2, we begin by
introducing the notion of locality structure. We then develop the marginal
Stein’s method in Chapter 3, which provides a framework to analyze the locality
structure and localization method in sampling. Specifically, we derive in Section 3.1
a marginal transport inequality and establish in Section 3.2 the exponential
decay of correlations in localized distributions. Some technical aspects of the

marginal Stein’s method are then discussed in Sections 3.3 and 3.4. In Chapter 4, we
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summarize the general principle of localization method in sampling. Then we
introduce two concrete examples: the MALA-within-Gibbs sampler in Chapter 5,
and the localized diffusion models in Chapter 6. Finally, we conclude in

Chapter 7 with a summary and a discussion of future research directions.

Chapter 2 )

Structure: Locality Structure
Chapter 3 )
Theory: Marginal Stein’s Method

Chapter 4
Method: Localization in Sampling

— ~

[ Chapter 5 ] [ Chapter 6

MALA-within-Gibbs Localized Diffusion Models
Chapter 7
Conclusion

Figure 1.1: Structure of the thesis

1.5 Preliminaries

In this section, we introduce some basic concepts in probability theory and graph
theory that are frequently used throughout the thesis. The materials presented
here are from standard textbooks, e.g. [42, 3, 12].

1.5.1 Probability theory

A probability space is a triple (€2, F,P), where Q is the sample space, F is a
o-algebra on 2, and P is a probability measure on (€2, F). Denote B(X) as the

Borel o-algebra on a topological space X.
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Independence and conditioning

Two random variables X, Y are independent if for any events C, D,
PXeCYeD)=PXeC) PY e€D).

Let G be a sub-o-algebra of F. The conditional expectation of a random variable

X given G is a random variable E[X | G] that is G-measurable and satisfies
VAe G, E[E[X |G] 14] =E[X14].

The conditional probability of an event A is defined as P(A | G) =E[14 | G]. The

conditional distribution 7x|g = ‘Law (X | G)’ is defined as
mxig(-1G) = B(X €| Q).

Note it is a R-valued G-measurable random variable. It is called regular if for any
w € Q, mx1g(- | G)(w) is a probability measure on (X, B(X)). Let Y be a random
variable, the conditional expectation, conditional probability, and conditional
probability distribution of X given Y are defined similarly by taking G = o(Y),
the o-algebra generated by Y. We say that two random variables X and Y are

conditionally independent given Z if for any events A, B,
PXeAYeB|Z2)=P(XecA|Z)-P(YeB|Z).

Markov kernel

A transition kernel K from (X, B(X)) to (V,B())) is a function
K : X x B(Y) — Rs,.

For function f : Y — R, measure 7 € P(X), define function Kf : X — R and
measure 7K € P()) as

Kfa) = [ Kladn)f), =K = [ (oK)
For two kernels K7 : X x B(Y) - R, Ky:Y x B(Z) — R, define kernel K1 K> as
KIKQ(xv ) =Ko K2<x7 ) = /K1<l’,dy)K2(y, )

12



A Markov kernel K is a transition kernel such that K1 = 1, or equivalently,

Vee X, K(z,Y)=1

1.5.2 Graph theory

An undirected graph G consists of a set of vertices V and edges E C V x V.
In this thesis, we allow self-loops, but do not allow multiple edges between the
same pair of vertices. For finite graph, denote b = #V, and attach each vertex
with a unique index i € [b]. We denote i as the vertex for simplicity. An (induced)
subgraph G' = (V',E’) of G with vertex set V' C V includes all edges in G that
connect two vertices in V', i.e. B ={(i,j) e E:i,5 € V'}.

Cliques

A complete graph is a graph in which every pair of distinct vertices is connected
by an edge, i.e. Vi,j € V,i # j = (i,7) € E. A subset of vertices C' C V is called a
clique if C is a complete graph as a subgraph of G, i.e. every pair of vertices in C'
is connected by an edge. Denote C = C(G) as the collection of all the cliques in G.
A maximal clique is a clique C' € C that is not strictly contained in any larger
clique, i.e. VA2 C = A ¢ C.

Path and graph distance

A path in G is a sequence of distinct vertices (ig, i1, ...,%) s.t. (ix_1,ix) € E for
k € [l]. We say it is a path from iy to 7; (or connecting iy and 7;) with length .
The graph distance dg(i, j) between two vertices i,j € V is the length of the

shortest path connecting them, i.e.
dg(i,j) = inf{l € Z; : 3 path from i to j with length [}. (1.5.1)
For simplicity, we let
e dg(i,7) = 0 for all 1.
e dg(i,7) = oo if no path from ¢ to j exists.

The average path length is defined as

lc = ﬁ ; dg(i, ). (1.5.2)
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Note the average path length measures how a graph is connected.
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Chapter 2

Locality Structure and Localized

Distribution

Locality is an important structure of many physical systems. The principle of
locality in physics states that an object is influenced directly only by its immediate
surroundings. In other words, physical interactions are inherently local, and any
influence from a distant event must propagate through the intermediate space.
Consequently, many spatial or temporal models exhibit the locality structure. A
most celebrated example is the Ising model in statistical mechanics, where the
interaction between spins is limited to nearest neighbors. Understanding how the
locality structure affects the properties of the system is an important problem in
statistical mechanics and many other fields. In applications, the locality structure
provides a promising strategy for designing scalable algorithms that can potentially
mitigate the curse of dimensionality. The idea has been studied across various
fields, including data assimilation, spatial statistics, image processing, and quantum
mechanics. In recent years, there has been a fast growing interest in sampling
methods that leverage the locality structure. We aim to provide a clear and
quantitative characterization of the locality structure in this chapter.

In this chapter, we first introduce the Markov random field to model the locality
structure. Next we define the central concept of this thesis, localized distributions,
as Markov random fields on localized graphs. We will discuss the key properties of

localized distribution and its relaxations.
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2.1 Locality structure

2.1.1 Markov random field

Markov random field (MRF), also known as the Markov network or the
undirected graphical model, is a widely adopted mathematical tool to model the
locality structure in distributions. In this section, we introduce the mathematical
foundation and important properties of MRF. We will refer to MRF on a localized
graph as localized distribution, a central concept in this thesis that will be used
frequently in the following chapters.

In short, a MRF X = (X});cv is a collection of random variables defined on an

undirected graph G = (V, E) and satisfies the Markov property
Xi L X5 | Xwggys if (4,5) ¢ E

Here X 1L Y | Z denotes the conditional independence of X and Y given Z. The
Markov property, or the conditional independence, precisely characterizes how the
random variables are locally dependent. And the dependence structure is encoded
in the dependency graph G.

In the following, we will introduce the locality of a graph to quantify the locality
structure of MRF. We will also introduce several equivalent characterizations
of MRF that are useful both theoretically and practically. For more detailed
discussions on MRF, we refer to [66, 118, 69].

2.1.2 Localized graph

We first introduce some basic notations and definitions of graphs, which will be
used to characterize the underlying dependency graph of MRF. For a more detailed
introduction to graph theory, we refer to Section 1.5.2.

Let G = (V,E) be an undirected graph. Let b = #(V), and we identify vertices

in G with indices ¢ € [b]. For convenience, we assume E contains all self-loops, i.e.,
Vie[b], (i,1)€E.
For immediate neighbors, we denote

i~j iff (i,j) € E

16



Note ~ is a symmetric and self-reflexive, i.e.
e Symmetric: i ~ j & j ~ .
e Self-reflexive: Vi € [b], 7 ~ i.

We denote the neighborhood of vertex i as

Ni={jelbl:i~j}) (2.1.1)

To quantify the sparsity of the graph, we define the r-neighborhood of v as

NI ={j€e[b]:de(i,j) <7}, (2.1.2)

where dg(i,7) is the graph distance (1.5.1) between ¢ and j, i.e. the minimum

number of edges that must be traversed to go from 7 to j.

v
e

Figure 2.1: Blue vertices: 2-neighborhood of vertex 5 (NVZ2)

\\
<
/

/

/

For a graph that represents the locality structure, the growth of the neighborhood
volume #(N]") with the radius r should not grow too fast. In many spatial models,
it grows at most polynomially, with an order determined by the dimension of
the ambient space in which the graph is embedded. This motivates the following
definition of localized graph.
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Definition 2.1 (Localized graph). An undirected graph G is called (s, v)-local for

some s, v € Z., if it satisfies:
Vielb], reZy, |N/|<1+sr. (2.1.3)

In the above definition, s denotes the size of the immediate neighbors, and v is
the ambient dimension of graph, which controls the growth rate of the neighborhood
volume with the radius. An important quantitative feature of localized graph is
that s and v are O(1) constants compared to the problem dimension, which ensures
effective locality of the graph. The polynomial growth of the neighborhood volume
with the radius r is a key aspect of this locality.

Localized graph arises naturally in discretization of spatial models. A typical
example is the mesh grid in numerical PDEs. Due to the locality of the differential
operators, most PDEs are local, and their spatial discretization leads to a localized
graph. This is explicitly represented by the sparsity of the discretized difference
operators in finite difference methods, or the sparsity of the stiffness matrix in

finite element methods.

Example 2.1. A motivating example for Definition 2.1 is the lattice model Z",

where the neighborhood of a vertex ¢ € Z" is defined as
Ni={jez :li-jl, <1}
In this model, a naive bound of the r-neighborhood volume is
NI =1 €22 i =l < 7} < (2 1) < 1+ (3r)".

So that the lattice model Z" is (3", v)-local.

Remark 2.1. For graphs, locality is a stronger condition than the sparsity. Sparsity
of a graph only requires that |E| = O(b), or the average degree = O(1). But locality
requires more than that. The slow growth of the neighborhood volume in localized
graph results in a large average path length (1.5.2). This excludes some sparse
graphs, including the small-world network [116], where short-cuts are allowed. For
graphs with short-cuts, the neighborhood volume typically grows exponentially
with the radius.
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Figure 2.2: Two-dimensional lattice model

2.1.3 Markov property

We proceed to define the MRF on a localized graph G by the Markov property.
Consider an undirected graph G = (V, E) with b vertices. Attach each vertex
i € [b] with a measurable space (X;, ;). Denote their product space as (X, F) =

(Qiciy) Xir Qe Fi)-

Definition 2.2. A MRF on G is a collection of random variables X = (X;);cp) in
the space (X, F) such that

Vi € [b], X; AL X[b]\M | XM\{i}; (2.1.4)

where N is the neighborhood of i (2.1.1).

(2.1.4) states that the random variable X; is conditionally independent of all
other random variables given its immediate neighbors. If (2.1.4) holds, we call
G a dependency graph of the MRF X. Note by definition, we do not require the
dependency graph to be minimal, i.e. it might include redundant edges.

In the following, we focus on Euclidean spaces, i.e. (X;, F;) = (R%, B(R%)),
where B(R%) is the usual Borel o-algebra on R%. Denote

= (x1,...,2p) € RY  where z; € R%, d:Zdi. (2.1.5)

Denote 7 = Law(X) as the probability distribution of the MRF X on R?. Unless
mentioned otherwise, we always assume that 7 is absolutely continuous with respect

to the Lebesgue measure A on R% Without abuse of notations, still denote its
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density as 7(x), i.e.
dm 1
m(x) = a(:{:) = exp (—=U(x)), (2.1.6)
where U() is the potential function, and Z = [, exp (—U(x)) dz is the normalizing
constant, or the partition function. Distribution of the form (2.1.6) is usually called
Gibbs distribution.

Notice the conditional independence (2.1.4) can be written as

W(fﬂi;m[b]\/\& xM\{z}) = 7T($i | ZIJM\{Z}) -W(I[b}\/\/i x/\ﬁ\{z}) (2.1.7)

Example 2.2 (1D Ginzburg-Landau). The Ginzburg-Landau (GL) model is a
widely used model in statistical physics [72]. A discrete 1D GL model describes
a chain of real-valued spins {z;}"_;, where each r; € R interacts locally with its

neighbors. Its Gibbs distribution is given by
1 n n—1
7T($) = E exp (Z V([L’J) + Z W(I'j, $j_|_1)> s
j=1 j=1

where V(z) = 2(2% — m?)? is the double-well potential and W (z,y) = g(x —y)?is

the nearest-neighbor interaction. Fix x4, we can factorize the distribution as
T(@j, Tlp; | Tjm1, Tj41) ocexp (V(xg) + Wizj—1, ;) + Wz, 2541))

- exp ZV(wi)+ Z Wz, i) |

i) i¢{j.j—1}

from which we can directly verify the conditional independence.

2.1.4 Equivalent characterizations

Besides the conditional independence (2.1.4), the Markov property in MRF can be

characterized in several equivalent ways.

Theorem 2.1. Let G be an undirected graph. Suppose a probability measure w has

nonnegative density m(z) € C*(R%). The following statements are equivalent:
(1) X ~mis a MRF on G, i.e. (2.1.4) holds.

(2) Vi,j € [b], it j= Vilogm(z)=0.
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(3) log m(x) admits a clique factorization, i.e. I uc}coec s.t.

—logm(x) = Zuc(:cc), (2.1.8)

ceC

where C 1s a collection of cliques in G.

Before stating the proof, we make some remarks on the above theorem. The
second condition requires the Hessian of log 7(x) to vanish in blocks corresponding
to non-adjacent vertices, which is known to be equivalent to their conditional
independence (see Lemma 2 in [103]). The sparse Hessian condition is also the key
motivation for the localization method in sampling, as it introduces great sparse
dependencies in the score function s(z) := Vlogm(x). More discussions on its
implication and applications will be given in Chapter 4.

The equivalence between the Markov property and the existence of a clique
factorization is the renowned Hammersley-Clifford theorem [24]. Note the clique

factorization is not unique.

Proof of Theorem 2.1. (1) = (2). The conditional independence implies

log W(xi, x[b]\f\/} x]\/}-\{i}) = log 7r(:ci ’ xj\/’,-\{i}) + log W(Z’[b}\/\/} xM\{i}).

So that
log 7T(I) = log W({EM) + log 7T<$[b}\{i}) — log W(IM\{Z'}).

For any j + i, we have

V?j log W(:E) = VN]- log W(IM) + VjVZ- log W(x[b]\{i}) - VNJ- log 77—(1'/\/2\{1}) =0.

(2) = (3). We prove by induction on the number of vertices b, and note that
log 7w(x) can be replaced by arbitrary function. The case b = 1 is trivial. Assume
it holds for b — 1. For b vertices, the result is trivial if G is a complete graph.
Otherwise, there exists a vertex k s.t. [Nix| < b. By (2),

Vi logm(@) =0 = Vilogn(x) = f(zn,).
If 7 € C3, the function f(zn;) = Vi logn(x) also satisfies condition (2):

Vi, j € Ni, ik j = Vif(an,) = Vi(Vilog(z)) =0.
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Since |Nx| < b, by the induction hypothesis, there exists a clique factorization

f(za) = Z uc(zc),

CeCy

where C, = {C NN} : C € C} for some clique collection C. Note
CH={CuU{k}:C e}
is also a clique collection in G (since j ~ k for all j € Nj). So that

Vi logm(x Z uc(ze) = logm(x Z uG (zo+) + g(@—g).  (2.1.9)
CeCy, ctect

Here uj, is any antiderivative of uc w.r.t. x3. Now Vi, j € [b],i ¢ N,

0= V2 log 7(x Z szuo+ ro+) + V?jg(x,k) = V?jg(x,k).

Ctrect

So that g also satisfies condition (2). By the induction hypothesis, g also admits
a clique factorization. So that (2.1.9) provides a clique factorization of log7(x).
When 7 ¢ C3, one can replace Vi logw(x) by finite difference d,, log7(x), or use
smooth mollifier; and the result still holds. This completes the induction.

(3) = (1). For any 4, note (2.1.8) implies

—logm(x Zuc xe) Z uc(xe) + Z uc(xe).

cec ceC,ieC CeC,i¢C

The first term is only a function of x;, since i € C' € C = C' C N;. One can write
logm(x) = log f(xx;) +log g(z )\ fiy)-
= m(wileany) o< flann), m(@pp e ay) < 9@pp )

So that (2.1.7) holds. This completes the proof. O

2.2 Localized distribution

In this section, we first define the localized distribution and study its important

properties, among which two important properties, i.e. dimension-independent
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marginal approximation and exponential correlation decay, will be studied in detail
in the following chapter. Then we introduce its relaxations, the approximate locality

and J-locality.
Definition 2.3. Localized distribution is a MRF on a localized graph G.

Besides the Markov property in MRF, the quantitative locality structure in
localized graph provides additional information in the localized distribution. For
instance, the slow growth of the neighborhood volume (2.1.3) implies that the
interaction between random variables at large distance must propogate through
a long path. This is the key intuition for the dimension-independent marginal

approximation and the exponential correlation decay.

2.2.1 Important properties
Reconstruction from marginals

The Markov property of localized distribution implies that the Hessian of its log
density is very sparse. Intuitively, this implies estimation of its density is much
easier than the general case. One way to characterize it is that the localized
distribution can be reconstructed from its low-dimensional marginals. Note in

general, one cannot uniquely reconstruct a distribution from its marginals, see
[113].

Theorem 2.2. A localized distribution w can be reconstructed from its neighborhood

marginals {Tx; }icjp]-

The above theorem only uses the Markov property, so that it holds for any
MREF. But for localized distribution, the neighborhood marginals are guaranteed to
be low-dimensional. It suggests that learning a localized distribution is essentially

a low-dimensional problem. We will discuss this in detail in Chapter 4.

Proof of Theorem 2.2. By the Markov property, m(z;|x_;) = m(z;|xp;\ fi3). Here we
denote z_; := p)\ (53 So that the conditionals {7 (x;|z_;)}icpp) can be obtained from

marginals {7 }ie[p). The above theorem then directly follows from Lemma 2.1. [

Lemma 2.1. Let u : R* — R be a differentiable function. Then up to a constant,

u = {Viulicp) is one-to-one. As a corollary, © — {m(x;|x_;) }icp) s one-to-one.

23



Proof. We prove by induction on b. When b = 1, u(z) = f[o ] Viu(y)dy + const.
For b > 2, Let v be any fixed antiderivative of Viu w.r.t. x1, i.e. Viv = Vyu, then

v(x) —u(z) = uy(xe, T3, ..., T4g).

wp is a function in R¥% | so that by induction hypothesis, it is uniquely determined
(up to a constant) by
{Vjur = Vju = Vjuljs  a.

Since v is fixed, {V;u},cpp) uniquely determines u;, and thus u (up to a constant).
This completes the induction.
For the corollary, suppose first m has C! density n(z). Consider the function
log w(z). Notice
Vilogm(z) = V;logm(zi|x_;).

So that up to a constant {log m(z;|z_;)}ic[p) uniquely determines log7(x). But the

constant can be fixed by the normalization condition

/W@Mx:L

When 7 ¢ C!, one can replace V;logw(x) by finite difference §j, log w(x), or use

smooth mollifier. This completes the proof. ]

Dimension-independent marginal approximation

Theorem 2.2 indicates that to estimate a localized distribution, it suffices to
estimate its low-dimensional marginals. Due to the local dependencies, the error of
approximating low-dimensional marginals is usually dimensional independent. It is
natural to consider the marginal version of existing distribution inequalities, such

as the renown Otto-Villani inequality [86]

W (s, v) < Co/ 1), (2.2.1)

where W, is the 2-Wasserstein distance, and |(u|v) = E, ||V log %HQ denotes the
Fisher information. Our target is to establish a marginal version of the above
inequality, which should be dimension-independent.

We will discuss such marginal inequalities in detail in Section 3.1. The following

theorem is from [33], where a marginal Otto-Villani inequality is established using
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the d-locality condition introduced in Section 3.1.3.

Theorem 2.3. Consider two distributions m, 7" € P1(R?). Assume 7’ is §-localized
(see Definition 3.1), then the marginal Wy distance of m, 7' satisfies

max Wa(m;, ) < 6 - max | V; log ' — V; log ] (2.2.2)

where m; and ., denote the marginals of m and 7' on x; respectively.

The above inequality provides a dimension independent uniform control of the
marginal errors in terms of the difference in the score’s individual components.
This is not achieved if one simply uses the joint distribution error bounds, since
those are usually dimension dependent as in (2.2.1). In high-dimensional problems,
dimension-dependent bounds are usually meaningless for marginal error control.

We would like to comment on the importance of the marginal inequalities. In
high-dimensional problems, usually not all the components are of interest, and one
usually only needs the statistics of a few components [44, 64, 111, 46]. For instance,
in image deblurring problems [46], the uniform marginal bound ensures that the
error is evenly distributed across the image, rather than concentrating on certain

pixels and creating unwanted artifacts in the image.

Exponential correlation decay

One of the most important properties of localized distribution is the exponential
correlation decay, which states that the correlation between two random variables
decays exponentially with their graph distance. Detailed discussions on the expo-
nential correlation decay will be given in Section 3.2. Here we state a key result
(Theorem 3.5).

Theorem 2.4. Suppose m has dependency graph G and is log-concave and smooth,
ie. 30 <m < M < oo s.t. mI <X —V%logm(x) X MI. Then for any i,j and
Lipschitz functions f : R% — R and g : R% — R, it holds

m

1 de(4,5)
Covanr (fla) g < — (1= ) fly ol (223)

We comment the above theorem does not assumes locality of the graph G. The

exponential correlation decay is merely a consequence of the Markov property.
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2.2.2 Approximate locality

In many applications, the locality structure is not exact, but only approximately

holds. It is therefore important to consider relaxations of the locality condition.
The first natural relaxation is based on the sparse Hessian condition (see (2) in

Theorem 2.1). Motivated by the ubiquitous exponential decay phenomenon, we

introduce in [56] the following approzimate locality condition.

Definition 2.4. A distribution 7 is called approximately localized w.r.t. G, if there

exist dimensional independent constants ¢, C; > 0 such that
V2 log7|| _ < Crexp (—crdgl(i, ) - (2.2.4)

Here |||, denotes the L*°-norm.

Here, by dimensional independence we mean c,, C;. do not scale with the problem
dimension for a certain class of target distributions.
Note the score function of approximate localized distributions can be efficiently

approximated by a low-dimensional function
sj(z) = V;logm(z) ~ 5j(xnr).

Here 7 is the localization radius and N7 is the r-neighborhood (2.1.2). Note by
(2.2.4), the approximation error decays exponentially with the radius r, while the
dimension of 5; only grows polynomially with r if G is localized.

Another relaxation is the d-locality condition [33], which is inspired by the
Stein’s method. It provides a quantitative characterization of the locality structure.
It is a more general condition, but is difficult to directly verify in practice. We will
discuss it in detail in Section 3.1.3.

Finally, we mention a possible relaxation of the localized distribution, which is
based on the exponential correlation decay (see Theorem 3.5). That is, we require
that for any ¢, j and 1-Lipschitz functions f : R* — R and ¢ : R% — R, it holds

|Covirnr (f(21), 9(;))| < Crexp (—cxda(i, 7)) -

Here C, ¢, are dimensional independent constants. Such relaxation captures an
important feature of locality structure, is easier to verify in practice, and also

applies to a wider range of distributions, including empirical distributions.
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Chapter 3

Marginal Stein’s Method

In this chapter, we introduce a novel marginal Stein’s method that relates the locality
structure to quantitative properties of high dimensional distributions. This method
originates from the classical Stein’s method [104], a powerful tool for quantifying
distances between probability distributions. It considers a Stein equation associated
with a test function, and provides a way to bound the test error via the solution of
the equation. To apply Stein’s method to derive bounds on marginal distributions,
we introduce the marginal Stein equation, where the test function only depends on
certain marginal variables. By a careful gradient estimate of the marginal Stein
equation, we derive a marginal transport inequality in Section 3.1 that provides
dimension independent bounds on the marginal distance. Some generalizations of
this marginal inequality are also discussed. This method can go beyond bounds on
marginal distributions, and it can be used to derive bounds on certain integrals
against localized distributions. In Section 3.2, we establish the exponential decay
of correlation between different components of localized distributions using the
marginal Stein’s method. Section 3.3 introduces the key technical analysis in
Marginal Stein’s method, i.e. the gradient estimate of the marginal Stein equation,
which crucially quantifies the locality structure. Section 3.4 interprets the marginal
Stein’s method from a Langevin semigroup perspective, which presents its own

theoretical interest.
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3.1 Marginal transport inequality

3.1.1 Stein’s method

Stein’s method is a useful approach for quantifying distances between probability
distributions. First developed in [104] for Gaussian approximation, it has been
extended to various distributions, including Poisson [17], binomial [105], diffusion
process [4], and high dimensional settings [96, 23]. We refer to Stein’s monograph
[105] for a comprehensive review. Here we focus on Stein’s method for general
continuous distributions.

Consider two continuous distributions 7,7 € P;(R?). Depending on the choice
of the probability distances d(m, "), we take test functions ¢ from certain function

class F. For instance,
o F={f:|fly, <1}, then d(m,7') is the 1-Wasserstein distance Wy (7, 7).
o F={f:|fllo <3} thend(m,7') is the TV distance TV(m, 7).

o F={f:]||flly <1}, where H is a reproducing kernel Hilbert space (RKHS),

then d(m, 7') is the maximum mean discrepancy MMD (7, 7).

Fix a test function ¢ € F, consider the Stein equation
Ly = Auy + Vlogm - Vuy = ¢ — Er[¢)]. (3.1.1)

Here L is called the Stein operator, which in this case is exactly the generator of
the Langevin dynamics [83, 3] associated with m. Suppose that for certain 7 and

function class F, one can derive the gradient estimate

sup || Vugl|, < Cr.
PpeEF
Here ||-||, denotes the L> norm. Then it holds that

sup [Eﬂ’ [¢] - Eﬂ' [Cb“ = sup Eﬂ" [(b - ]ETK' [(b]] = sup Eﬂ'/ [ﬁwud)]
peF peF pEF

= supE[(Vlogm — Vog7') - Vuy)
$eF

< sup |Viegm — Viog @'l 11| Vgl
PEF

< Cx||Viogm — Viog7'|| 1 (rry.-
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Here the second line follows from the integration by parts (or Stein’s lemma [4])

E[Lrug) = /(Au¢(x) + Vlog () - Vug(z)) ' (z)dx
= /(—Vu¢(x) V7' (z) + Viogn(z) - Vug(x) 7'(z))dz  (3.1.2)
— /(V logm(z) — Viegn'(z)) - Vuy(z) 7' (x)dz.

We can see from above that the key step is to derive the gradient estimate of
Stein equation for specific distribution 7 and function class F. The result then

follows from the standard argument of Stein’s method.

3.1.2 DMarginal Stein equation

To derive bounds on the marginal distance, consider test function ¢ that only

depends on the ¢-th component x;, i.e.
o(x) = ¢i(xi), ¢i € Fu.
Notice the obvious relation
Er/[¢i] — Er,[¢i] = Ex[¢] — Ex[0].

The right hand side can be controlled using the Stein’s method. Then it suffices to

derive the gradient estimate of the marginal Stein equation
Lrug(x) := Augy(z) + Viog m(x) - Vug(z) = ¢i(z;) — Ex[oi(zs)]. (3.1.3)

Note the left hand side is generally a function of x, but the right hand side is only a
function of x;. Well-posedness of (3.1.3) requires certain conditions. In this thesis,

we focus the following scenario:

e 1 satisfies the Poincaré inequality [3], i.e. there exists a constant Cp > 0 s.t.

Vu € H' (), Covy(u) < CpE,[||[Vul]. (3.1.4)

e ¢; is a Lipschitz function, i.e., |¢i|y;, < oc.
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Under these conditions, we can show by Lax-Milgram theorem that the marginal

Stein equation (3.1.3) has a unique solution u, in the space
Hj(m) = {u € H'(n) : E;[u] = 0}. (3.1.5)

Under this setting, we can derive the W; bounds on the marginal distance. Extension

to other distances is left for future work.

3.1.3 4-localized distributions

Deriving the gradient estimate of the marginal Stein equation (3.1.3) is non-trivial.
For generality, we propose in [33] to directly use the gradient estimate condition to

identify a class of distributions that satisfy the marginal transport inequality.

Definition 3.1. A distribution 7 € P;(R?) is called J-localized for some constant
§ > 0, independent of d, if for any i € [b] and 1-Lipschitz function ¢; : R% — R,

the solution u(x) to the marginal Stein equation
Aufz) + Vlogm(x) - Vu(z) = ¢i(wi) — Ex[di(zi)],

satisfies the gradient estimate

b
IVully == 3 IVull o <6 (3.1.6)
j=1

We will show in Theorem 3.3 that the d-locality condition directly implies the

marginal transport inequality. From the proof of Theorem 3.3, we can see that
Vu(x) quantifies how modifications of V;log w(x) affect the marginal ;.

We keep the technical definition here for the sake of generality. In the following,

we consider two classes of distributions, i.e. the localized distributions and the

distributions with certain diagonal dominance condition, and claim that they are

d-localized with ¢ independent of d.

Localized distributions are d-localized

Theorem 3.1. Let G be a (s, v)-local graph. Suppose m € P(R?) is localized on G,

and satisfies for some 0 <m < M < oo,

vz e RY ml < —V?logm(z) = MI.
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Then m is d-localized with § = % where k = %
Proofs are delayed to Section 3.3.3.
Remark 3.1. The condition number x plays an important role in localization:

e r is known to be crucial to preserve the band structure in matrix inversion
[38, 9]. In probability language, consider a Gaussian distribution N(0,C'),
then a moderate x ensures the equivalence of local correlation (C' is nearly

banded) and conditional dependencies (C~1 is nearly banded).

e We comment that the condition number x of typical localized distributions
is independent of dimension d. This is in contrast to the distributions for
fixed-domain models with finer resolution. The key difference is different

types of high-dimensionality. An illustrative example is the 1d lattice model:
L p g 2
m(x) o exp 57 Az — 3 z||” ),

where z € R?, and 2T Az comes from discretized Laplacian.

1. Fixed-domain type. Fix domain [0, 1] and take ), = kh and h = (d+1)7*

Then
(2 -1 0 - 0]
. -1 2 -1
—VQIOgW(x):—AijyI:ﬁ 0 —1 2 - 0f +I.
0O 0 O 2

The condition number is thus

v+4h sin? - 4r sin’

dm
(d+1) 2Z(CZ—H) - d2.

4+ 4h2sin? sin

@) 3@+

Examples include using a finer discretization of a PDE problem.
2. Extended-domain (locality) type. Fix mesh size h = hg, and consider an
extended domain [0, (d + 1)/hg]. Take xj = khg, then —V?log(z) has

the same form as above with h = hy. Therefore,

T 4hy? sin® (gﬂ) ot 4hg? .

’y+4h0 sin? (d+1) Y
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Examples include spatial extension of a physical system.

In summary, the high-dimensionality in distributions of fixed-domain type
comes from refined discretization; while for locality structure, it comes from
an extended domain. Since interaction is still local in the extended system,

the condition number should be dimension independent.

Diagonal dominant distributions are ¢-localized

Another condition that implies d-locality is a diagonal dominance condition studied
in [46], which is motivated by an image deblurring problem. In this case, the
dependency graph of the distribution is not necessarily local. The locality is
guaranteed by the diagonal dominance, which can be interpreted as that any block

x; is mostly correlated with itself rather than with other blocks x;.

Theorem 3.2. Consider m € P1(RY). Suppose H(z) :== —V?log w(x) is c-uniformly
diagonal block dominant, i.e. there exists a matriz M € R%b s.t. Vi, j € [bl,i # 7,

Hii(z) = Miilg,, ||[Hij(z)| < Mij; Z M;; + ¢ < My,
ji

where H;;j(x) denotes the (i, j)-th subblock of H(x). Then 7 is ¢ '-localized.
Proofs are delayed to Section 3.3.4.

Remark 3.2. (1) The diagonal dominance condition takes a similar form as the

Dobrushin condition [39], where it assumes that the sum of the influence coefficients

pij = sup TV (7ri|,i(-\a:_i),7ri|,i(-\y_i)) )
T—is Y= T\ (3,5} =Y\ {5, }

is bounded by a constant ¢ < 1, i.e. max; Zj:#i pij < c. Although M;; and p;;
have similar interpretations, i.e. they measure the correlation between z; and z;,
it is hard to find direct connection between them. The motivation for the two
conditions is different: the Dobrushin condition is to ensure the uniqueness of Gibbs
measure, while the diagonal dominance condition is to ensure the distribution is
effectively localized. We also point out that the Dobrushin condition in general is
hard to verify, while the diagonal dominance condition is easier to check in practice.

(2) The conditions above imply that 7 is log-concave. Denote M’ € RPxP
s.t. M, = 2M;;1;—; — M;j, then M’ is c-diagonal dominant. Gersgorin discs
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theorem [62] implies that the smallest eigenvalue of M’ is lower bounded by ¢, and

thus

r)u = ZUTH j2 ZM” laall® =~ Mg [l |

i#J

Z j il sl = CZ luil* = e lull”.

3.1.4 DMarginal transport inequality

Theorem 3.3. Consider two distributions m, 7' € P1(RY). Assume 7’ is 6-localized,

then the marginal Wy distance of w, 7' satisfies

max Wy (7, m) < 6§ - maXHV logn’ — Vlog || i s (3.1.7)
i€b] Jelb]

where m; and w, denote the marginals of m and 7' on x; respectively.

Proof. By Kantorovich duality [113],

W1(7Tz‘77rzl') = Sup [Em [¢Z] - Eﬂ§ [¢ZH .

¢;€Lip;

Let u(z) solve Stein equation
Lrou(z) = ¢i(xi) — Er[gi(x)].
Since 7’ is d-localized, we have
IVull oy <0
Denote ¢(x) = ¢;(z;), then by Stein’s Lemma (3.1.2), we have

Er (9] — En/[0]

Ex[¢] — Ex[¢]
Ex[¢ — En[¢]] = Ex[Lrru]
E.[(Viogr' — Vliogr) - Vul (3.1.8)

[(Vjlogn' — V,logn) - Vjul.

HMU
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Therefore, we obtain

Wy (m;, ) < E.. [¢i] — Ex o] .
max Wi (m;, 7}) < max ¢fgg;l§1[ o] [i]]

b
< max max Z ||VJU||oo - max ||VJ logﬁ’ — Vj log 7T||L1(7T)
7 i€Lip; 1 7

= 0 -max||V;logm — V;log 7|1 -
J
This completes the proof. O]

Remark 3.3. To control the marginal error, one can directly apply Otto-Villani

inequality [86] on the marginals and obtain

W (7, 7h) < Cm\/Em [||v1ogm- — Vg ||*|.

The main issue of this approach is that we often only have access to m and «’ but
not to their marginals. Evaluating the marginals is often computationally very
challenging as it involves integrating out the other components. This makes the

inequality less useful in practice.

3.1.5 Generalizations of marginal transport inequality

Various generalizations of the marginal transport inequality are possible for appli-
cations in different scenarios. They can be similarly derived using the marginal

Stein’s method. We introduce two examples here.

Marginal error of a specific block

The marginal transport inequality only provides a f.-bound over the marginal
blocks, which is due to that we use a d-locality condition that mixes all blocks. For
localized distributions, the proof of Theorem 3.1 already reveals the exponential
decay of ||V u|l in terms of dg(4,j) (cf. (3.3.10)). A direct consequence is the

following marginal transport inequality for a specific block.

Proposition 3.1. Under the conditions in Theorem 3.1, it holds that

Wi (7, ) < - z[;] (1 - M) [Vjlogn' — V;logm|| 1 -
VIS
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This is a special case of Proposition 3.2. The above proposition says that the
approximation error of a certain marginal of localized distributions mainly depends
on the error of its neighboring components of the score function. This provides a

refined control compared to Theorem 3.3.

Marginal error of multiple blocks

The marginal transport inequality only considers the marginal distance of 7w and 7’

on one block x;. It is natural to extend this result to the case of multiple blocks.

Theorem 3.4. Consider two distributions m, 7' € Py(R?). Assume 7' satisfies
any one of the conditions in Theorem 3.1 or Theorem 3.2, then for any index set

I C [b], the Wy distance of w,7" on the marginal x; satisfies
Wi (rp,7p) < || - max IVjlogn’ — V;logm| 11y - (3.1.9)
JjE

Here 6 can be taken as the same as in Theorem 3.1 or Theorem 3.2.

Proofs are delayed to Section 3.5.1. Theorem 3.4 provides further control on the
correlation between different blocks in 7/, which cannot be directly derived from
Theorem 3.3. When 7 and 7’ are both Gaussians, Theorem 3.3 only guarantees
that the diagonal blocks of the covariance matrix of 7" are close to those of 7, while

Theorem 3.4 further guarantees that the off-diagonal blocks are also close.

3.2 Exponential correlation decay

In localized systems, interactions between different sites are short ranged, and any
influence from a distant site must propagate through the intermediate space. This
implies that perturbations at one site affect distant sites only weakly, hence the
correlation decays. In this section, we will quantify such decay and show that it is
exponential in the distance in the low temperature or weakly coupled regime. Such
exponential decay is a ubiquitous phenomenon reported in probability [71, 15],
statistical physics [14, 41] and quantum mechanics [7, 53]. We will use the marginal
Stein’s method to derive the correlation exponential decay, where the gradient
of the solution to the marginal Stein equation precisely encodes the correlation

structure. We will also discuss a generalized version of the exponential decay result.
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3.2.1 Exponential correlation decay

Theorem 3.5. Suppose m has dependency graph G and s log-concave and smooth,
ie. 30 <m < M < oo s.t. mI <X —V%logm(x) X MI. Then for any i,j and
Lipschitz functions f : R% — R and g : R% — R, it holds

1 de(3,5)
Cove (i), 9ol < — (1= )l lolsp - (3:21)

Note the above theorem does not assume the sparsity or locality of the graph. It
is merely a consequence of the Markov property. The proof is based on the marginal
Stein’s method, and a key result (Theorem 3.6) on the gradient estimate of the
marginal Stein equation, which quantifies the exponential decay of the correlation

in localized systems.

Proof of Theorem 3.5. By subtracting the mean, we assume without loss of gener-
ality that E;[f(z;)] = Ex[g(z;)] = 0. Then

Cov, (f(ai)glay)) = [ ai)g(ay)(a)da,
Consider the marginal Stein equation

By Theorem 3.6, the following gradient estimate of uy holds:

IVl < — (=) Iflusy-

By integration by parts, it holds that

/ F()g(w))m(x)da

_ / (Aug(z) + Viogn(z) - Vuys(x)) gla;)m(x)da
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Here we use V,,g(x;) = 0 if i # j. Combined, we obtain

(Covy (F(ar), ()| = \ [ Viuste) - Vot

< / IV (@) | | V()| 7(z)da

1 m \ 96 (%,5)
m (1 - M) |f|Lip |g|Lip'

This completes the proof. O

IA

Theorem 3.6. Suppose m has dependency graph G and is log-concave and smooth,
ie. 30 <m < M < oo s.t. mI < —V2logm(x) < MI. For any i and Lipschitz

function f: R% — R, let u(z) solve the marginal Stein equation

Lou(z) = f(x;) — B[ f(z:)].

The following gradient estimate holds:

1 m dG(Zhj)
IVjullo = — (1 - M) [ fliip (3.22)

Proof. The proof is based on a refined analysis of that of Theorem 3.1. By

Lemma 3.1, the gradient of the solution to the marginal Stein equation is given by
Vu(z) = — /OOOE Vo, X7 - VA(XT)] dt.

where X[ is the path solution of the Langevin dynamics
dX? = Viog n(XE)dt + vV2dW,, X& =u.

Since f is Lipschitz, we obtain

IV,u@)] < |l / E|[V o, X7 .

As in the proof of Theorem 3.1, (3.3.10) holds:

[0.9]

Ve, X7l < e Y

T:d(_.‘,(i,j)

t"(M —m)"
7! '
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Therefore,

IVu() < [flus / E|| V., X7||dt

> t"(M —m)"
S D I
r=dg(%,7)

1 mN\" 1 m \ 96(4.7)
= |/l 77 d}(: _) (1-2) =~ (1= )
r=dg(2,]

The conclusion follows by noting the above bound holds for all x. O]

Recall in the proof of Theorem 3.3, ||V;u|| controls how much the marginal
distribution 7; changes when we perturb the score V;logm. The above theorem

directly implies a refined version of Theorem 3.3:

Proposition 3.2. Consider two distributions 7,7 € P1(R?). Suppose m has
dependency graph G and s log-concave and smooth, i.e. 30 < m < M < o0
s.t. mI < —=V?logm(x) X MI. Then it holds that

Wiy (7, ) < — Z (1 — M) |V, log " — V;log 7| 1y - (3.2.3)
j€l(b]
Proof. The result directly follows from (3.1.8) and Theorem 3.6. O

3.2.2 Generalization

In Theorem 3.5, the functions f and g are assumed to only depend on z; and z;. A
direct generalization is possible by allowing f and g to depend on all variables, but
with ‘concentration’ on x; and x;. These observables arise in practical problems
such as spatial statistics, where they are often expressed as local functionals of the

entire field. For these observables, we prove

Theorem 3.7. Suppose 7 is localized on a (s, v)-local graph G, and is log-concave
and smooth, i.e. 30 <m < M < oo s.t. mI < —V?logm(z) X MI. Leti,j € [b],
and suppose f,q: R = R satisfy xz

IViflloe < Lpexp(—cpda(is k), [|Vigllo < Ly exp(—cyda(j, k).
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Then it holds that

Covi (/). 9(@))] < LyLysn)(da(i, 1)) exp(—cda(i, ). (3.2.4)

Here 3,41y € P3(,41) s a polynomial depending on s,v and c, and c is defined as

. { log (1 m
¢ =min\ ¢y, ¢y, — lo ( ——)},
M

Proof. By subtracting the mean, we assume without loss of generality that E,[f] =

E:lg] = 0. Then
Covy (f(x). g(x)) = / f(@)g(z)m(x)da

Let u solve Stein equation L,u = f. By Lemma 3.1, the solution is given by

e =~ [ R,

By (3.3.10) and the assumption on f, we have

MOIEDS / (1920 X2 95X dt

ke[b]
M —m)" .
< Z/ % - Lyexp(—cydg(i, k))dt
ke(b] r= dG (k,0)
L
_ L Z Z (1 - —) - exp(—c;dg(i, k))
| r=dg(k,l)
Ly m A do(k,0) ‘
= (1 - M) -exp(—cydg(i, k)).

ke[b]
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Therefore, as in the proof of Theorem 3.5, we have

L.L m dg(k,l) . .
< ;‘ng Z (1__) .exp(—cfdG(Z,k))eXp(—ngG(jal»

% exp(—CdG(i, ])) Z eXp(—CT)

r=0

: m
c = min {cf,cg,—log (1 — M>}

Since G is (s, v)-localized, we have

IN

Here we denote

#{(k,1) € [b]* : dg(i, k) + dg(k, 1) + dg(j, 1) = de(i,5) + r}

< > (1+sd?) (1 +sdy) (1 4 sdb)
di+d2+d2=dg(3,5)+r

(dc(i,j); T+ 2) (1+s(de(d,j) +1)")°

< Cs* (dg (i, 7) + )",

<

for some universal constant C' > 0. Note

[©.9]

Z eXp(—cr) (dG(Z,j> + 7n)3y—§-2
r=0

< D exp(—er)2 ((da (i, )2 +r7F2)
r=0

< 231/+2 (C_l(dG<i,j))3V+2 —|—ecC_3(V+1)F(3(I/ + 1))) .

40



Here we use
o o0
Z eXp(—CT)T31/+2 < / exp(—cx)(x 4+ 1)3V+2d$
r=0 0

[e.9]
= eC/ exp(—cz)2? dx
1

< e BHITB((w +1)).

Therefore, we obtain

‘/f(x)g(l’)ﬂ(w)dw < LLgsw41)(da(i, 7)) exp(—cdg (i, j))-

Here we denote

23u+2

V3w (z) =C $3 (1?2 4 eI (3(v 4 1)) ) .
(v+1)

m

This completes the proof. H

3.3 Gradient estimate of marginal Stein equation

We now prove the gradient estimate of the marginal Stein equation (3.1.3). The
idea is to use the explicit solution (3.3.1) by Dynkin’s formula, and represent its
gradient as an expectation of the derivate of the path solution of the Langevin
dynamics (3.3.2). The main technical part is to control the diffusion speed of
the Langevin dynamics using the Dyson series [43]. The idea originates from the
polynomial approximation of the inverse of a banded matrix in [38, 7, 6], and we
generalize it to the case of time-dependent banded matrix. We mention that [52]
derive a decay result for this case (termed time-ordered exponential), but their
bound depends on the total dimension, which arises from a combinatorial term in
the path-integral formula. Our result avoids the dimension dependence by using
Dyson series, see [33] for more discussions. We also document our earlier proof

using PDE analysis approach in [46] for the diagonal dominant case.

3.3.1 Explicit solution of Stein equation

Lemma 3.1. Suppose 7 € P(RY) is strongly log-concave. For any i € [b] and
1-Lipschitz function ¢; : R% — R, the solution of the marginal Stein equation
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(3.1.3) is given by (up to a constant)

e) == [ B[00 - Bnalora] . (3.0
where X[ is the path solution of the overdamped Langevin dynamics
dXT = Vilegn(X&)dt + V2dW;, X¢& =z (3.3.2)
As a corollary, the gradient estimate holds
IVyu)l < [ BN Xt (333)

Remark 3.4. When the Stein operator L, is a generator of a process, it is known

that the according Stein equation admits explicit solutions (3.3.1) (see [4]).

Proof. Let X7 solves the Langevin dynamics (3.3.2). By Dynkin’s formula [83],

P = E/ (Viogm(X}) - Vu(X}) + Au(X})) dt (3.3.4)
4 3.3.4
— /O E [¢i(X];) — Eurorlo(af)]] dt.

Since 7 is strongly log-concave, it is well-known that Law(X}) converges to m
exponentially [3]. It implies that the limit 7" — oo exists for both sides in (3.3.4),

and the limit is
[ utn@its - u) = [ B0, - Eagerlortal)] e

This gives (3.3.1) up to a constant. Taking derivative w.r.t z; gives

Viu(x) = —/0 E [ijX,fi : V(;Si(Xffi)} dt.

Note it is valid due to the exponential decay of V,; X";. Since ¢; is 1-Lipschitz,

[Vou@)|| < [ B[V, X5 [[Vol(XE)|] dt < | B[V, Xl|dt.
0 0

This completes the proof. H
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3.3.2 A key lemma

We now prove the following key technical lemma, which essentially controls the
diffusion speed in graphs. The proof is based on the polynomial approximation

trick in [38] and Dyson series [43].

Lemma 3.2. Let H; € R? be a time-dependent positive definite matriz satisfying:
1. Hy has dependency graph G, i.e. Hy(i,5) =0 if dg(i, j) > 1.
2.dM >0st. ¥Vt >0, 0= H X MI.

Here I € R4 denotes the identity matriz. Consider the matriv ODE

d
= —HGy, Go=1. (3.3.5)

Then for any t > 0, it holds that

. =tk ME
|G(i, D < exp(=tM) > — (3.3.6)
k=dg(ij)

Proof. 1. Scaling. First note by a scaling argument, it suffices to consider t = 1.
Consider t = ;. Let Gy solves (3.3.5), then Gy, solves

d
@Gtos - _tOHtosGt057 GO = 1.

If the theorem holds for ¢ = 1, then we obtain that at s = 1 (note |[tgHys|| < Mty),

= Mk
|G (i, 4)|| < exp(—Mtg) Y T
k:dG(Z7J)

II. Dyson series solution. By variation of constants formula, we have

t
Gt:I—/ H,Gyds.
0
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Applying this identity recursively, we obtain

t S
Gy=1 —/ H, (I —/ HuGudu) ds
0 0
t t s
=1 —/ Hds +/ / H,H,G,duds = - --
0 0o Jo

N-1
=I+> (-1)" Hy, - Hy vy <pycncp, dty - - dty,
n—1 [0,¢]™

-+ (—1>N N HtN s Htht1 1t1§t2§'“§tth1 s dtN
[0,7]

For simplicity, denote

n!
X()(t) = [, Xn(t) = t_n [0 ﬂ th s Ht11t1§t2§~~-§tndt1 s dtn, n 2 1.
RN(t) = N HtN s Hthtl 1t1§t2§...§t1\,dt1 s dt]\f
[0,7]

Notice X,,(t) is the average of ‘H™ in [0,¢]. Then

ntn

Gy=) (-1) —Xu(t) + R (1),

Now we prove that limy_, Rn(t) = 0. First notice ||G;||, < 1, since

d t
aGf Gy = —2G'H,G, = G/G,=1-2 / GTH,Gds < 1.
0

So that as N — oo,

IRl < |

[0,]V || tN||2 o ||Ht1 ||2 ||Gt1 ||2 1t1<t2<...<tN tl cee tn
it d d
MNtN

N — 0.

< MN/ ipcoydt - diy =
[0.4]

This proves that the Dyson series converges, and

Gy = Z(—l)"an(t).
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III. Representation of polynomials. Denote the matrix process space

2 = span{ X, (t),n > 0} = {Zn:aan(t) ay € (C}.

k=0

We define the representation of any polynomial P in 2~ as

= iaka(t), if P Zakx
k=0

Note that it can be extended from polynomials to any analytic functions. In

Lemma 3.3, we show that the representation has an equivalent definition: if

P(z) = an [[1—,(z — xx), then
an h
= Z / Ht1 Toy 1 / (Ht2 _‘7302])"'
0

= t (3.3.8)
. / (Hy, — x4, 1)dty, - - - dtodty.
0

Here S,, is the permutation group of degree n.

IV. Banded matrix approximation. By Taylor expansion,

o0 Xn
exp(—x) = exp(— Z , Xp(z) = (M —2x)".

n=0

Represent the series in 2", we obtain
= L s
Gl = eXp 2_:0 n_ n

X,[X](1) = Z /0 (MI—Hy) - (MI — Hy )1y, <pyecp, dty - - - diy,

Here we use the alternative representation (3.3.8). We can truncate the Dyson

series of (G1 as

Gr = exp(—M) 30 X XI() +exp(-M) B KX,
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Consider the off-diagonal entry G1(i,j). Take n = dg(4,j) — 1, then since all the
path in G connecting ¢ and j has length no less than dg(7, j) > n, it must hold that

VI<r<n, [(MI—Hy)-(MI=H)](i,) =0 = X[X]1)(,5) =0,

Therefore,

Gi(i,j) = exp(—M) Y

r=n+1
Since 0 =< Hy, < M1, it holds that [[MI — Hy,[|,, < M, and thus

~ XX, g)

||Xn[X]<1)||0p S M”n' /[O 1] 1t1§t2§--~§tndt1 .. dtn = Mn

. — M’ — M’
= [|G1(, 4)|| < exp(=M) > o = exp(=M) > T
r=n+l r=dg(i,j)

This verifies the case when i # j. For ¢ = j, the result directly follows from
1G1(@ )|l < (|Gl < 1. [

Lemma 3.3. The two representations of polynomials in 2 are equivalent, i.e.
P[X](t) = P{X}(t), VPeP.

where we denote P{X }(t) for polynomial P = a, [[,—,(x — x1) as

tn—l
P{X} = an Z / Htl II)'o—l / (Ht2 — 1'0—21) """ / (th — xa'nl)dtn cee dtzdtl
0

oc€Sn

Proof. We prove by induction. First note n = 1 is obvious,

ar
t

(a1(z —21)){X}(t) = /O (Hy — 21 1)dty = ar (X (t) —211) = (ar(z —21))[X](2).

Now consider n > 2. Notice P[X](t), P{X }(t) can both be viewed as mulitlinear
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maps on ri,...,x,. Take the partial derivative w.r.t. x,,
Ve, (P{X}(1))

t t—1 tn—1
= tl Z / (Htl - :L‘Ul I) e / vwn (Htk - InI) T / (th - "Bo'nl)dtn e dtl
0 0 0

k=10€S,,0,=n

S

n

t tk,1 tn—l
= -2 Y [ amwan e [ ne [, Dty
0 0 0

k=1 0€S,,0,=n

& t tn—1 N
= — tfnz > / (Hy, — 20, 1) -+ (to-1 —tk+1)-../ (Hy, — 2, I)dty - dty - - - dty
0 0

k=1 o0€Sn,0,=n

an n t tn—2
- (Hi = o) (s —t) - [ (i, =2 Dty
" 0 0

k=10€S, 1
= —t;‘-tagg_l/o (Hy, —xml).--/o (Hy, , — %o, D)dt, 1 ---dt
- —a <H<x - xk>> (X}(t) = —an <H<x - :m) X](0).

k=1 k=1

Here the first equality follows from discussion on the position of x,. The third
equality follows from integrating the variable ¢; and notice the constraint #;,1 <
trx < tp_1. The forth equality follows from relabeling the index and taking ¢, = 0.
The last equality follows from the induction hypothesis. By symmetry, the relation

holds for any x;:

Ve, (PUCH) = = (an T] (=) X)(0) = (V2 PYXI(0),

J:jFi

since Vg, P(v) = —an [];,;4,(x — z;). Now notice the representation P[X] is linear

in the coefficients of P, it is direct to verify
Ve, (PX](1)) = (Va, P)[X](t) = Vo, (P{X}(1)) -
Finally notice when 21 = --- =2, = 0,
n' t t1 tn—1
2 {X}Ht) = t_”/ Hy, H, - Hy dty ---dt, = X, (t) = 2" [X](¢).
0 0 0

Now the two multi-linear maps agree on one point, and also on all the partial
derivatives. So that they must be identical. This shows the equivalence holds for

n, and by induction, it holds for all n. H
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3.3.3 Proof of Theorem 3.1

Proof of Theorem 3.1. Under the conditions in Theorem 3.1, Lemma 3.1 holds. By
(3.3.3), it remains to control V,, X};. Taking derivative w.r.t. x in (3.3.2), we get

dVX}P = —H; - VX'dt, H;:=—-V?logn(X}). (3.3.9)
Note here VX? = V,X¥ € R4 Denote Gy = €™V X7 and H, = H, — mI, then

it holds that

d ~
GCGi=c" "(mVX] — HiVX]) = —H,Gy, Gy=VXj=1.

By assumption, 0 < H; < (M —m)I, and H,(i,5) = 0if dg(i,j) > 1. By Lemma 3.2,

m €T . _ —-m ad t’f’(M - m)r
"V, XTIl = [1Golk, I < 7m0y 1 (3.3.10)
dG(]ak)

r=

The estimate holds for any initial condition x. For different vertices j € [b], consider

different initial conditions 2(), and take summation over j € [b], we obtain

o
d v, <J>szj I

JE[b]

efmtef(Mfm)tZ i t’"(MT'— m)"

<
Jj€[b] r=dc(j,k)
ot (M tr(M m) t"(M —m)"
_ mt_—(M—m)t
= e yormy > r!
r=0 k=1 j:0<dg(j,k)<

| /\

et 4 oMt Z o )
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Here we use the sparsity condition [N]\{j}| < sr” (2.1.3). From (3.3.3), we obtain
: > ()
S IV < Y [ B9 X
jelbl jelb) ”?
> ()
0 J
jeb]

I = (M —m)
mt Mt v
< /0 (e + se g r T) dt

r=1
1 I S Z V(]_ m>7“
=—4+ =) - —) .
m ]\47’:1 M

By Lemma 3.6, it holds that (denote x = )

m

St < 5 () 05

1 svlk
= — (I+svk’(1—x"1) <
m m
Taking supremum over z), we obtain the gradient estimate with § = s”;fy. O]

3.3.4 Proof of Theorem 3.2

We provide two proofs of Theorem 3.2. The first uses similar arguments as in
Theorem 3.1. The the second proof (from [46]) is based on the maximum principle
of the elliptic PDE.

Stochastic analysis approach

Proof I of Theorem 3.2. Similar as the proof of Theorem 3.1, it remains to control
VXY in (3.3.9). To control the 2-norm of V, X} € R%*di consider fixing a test
vector v; € R% s.t. ||vj|| = 1. For i, € [b], denote ¢¥(k,j) = Vo, XT - vj € R,
Then

d .. d . N
&gt (kv.]) = vathJ{Uj = _Ht . ijXt "V
b b
= = H (k)Y XE vy = =Y Hy(k g (1, ).
I=1 =1
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Here we denote Hy(k,l1) € R%**4 as the (k,[)-th subblock of H;. Then by the

diagonal dominance assumption,

b
1d . o ol
Ea ||gt <k7j)||2 = - Z(gt (kvj))THt(k7l)gt (la.])
=1
< — My [lgF (k. )IP + D Mia llg (k. )11 98 (L, )] -

114k

o Id L 2 v oo DL .
Notice 5& ||gt (ka.])“ = ||gt (kvj)“ E ||gt (k7j)||7 we obtain

197" (. )1 < =M 17" (B, ) + D Miyallgi (1, )] -

d
dt L:l£k

Note this inequality holds for any index j, k € [b], test vector v; and initial condition

. For different indices j € [b], consider different initial conditions z), and denote

the matrix G; € RP*? where

: @,
Gi(k, j) = llgi (K, )|
Then the above inequality can be written compactly in a matrix form
d 3 3
&Gt S —MGt, Mij = 2Mu]-z=j — sz
Here < is in the entrywise sense. Note the initial condition is Gy = I, since

. ROP +) ;
Golk,7) = llgs (k. DIl = IV .00 X5 vl = ||Vx§j>95;(f)vjl| = 0jk [[vj|| = djx-

By assumption, Vi, j € [b],i # 7, Mij = —M;; <0, and
Z |Mij|+C: ZMZ'J‘-FCS Mm :Mm
JijFi JijFi
Thus we can apply Lemma 3.7 and obtain
2

[Gilloe < e™|Golloc =™ = maxy |V, X7 vl <e™.
. J
J
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Since v; is arbitrary, we obtain that
2O e
mgXZ IV, Xii Il < e
J
Recall (3.3.3), this implies
: > ()
S IVl < Y [ EIV,0x
j i 70
> ()
B [ IV,
0 ;
< ]E/ e dt =c .
0

Now as 1) is arbitrary, we obtain the gradient estimate with § = ¢~ 1. O

PDE analysis approach

Proof II of Theorem 3.2. Let v : R — R% be a vector-valued function. Denote

Lrv as the entrywise application of the operator £, (cf. (3.1.3)) on v;, i.e.
,CWU = ([erla ce ,Cﬁ’Udj)T.

Note it suffices to prove (3.1.6) for ¢; € C' N Lip;. Since this space is dense
in Lip, so for general ¢; € Lip;, we can take a sequence of (bgk) € C' N Lip, that
converges to ¢;. If (3.1.6) holds uniformly for gbgk), then passing to the limit shows
that it holds for any ¢; € Lip;.

Now fix any ¢; € C' N Lip,. It is straightforward to verify by standard elliptic
theory that the solution exists (up to a constant) and u € C3. Taking the gradient

w.r.t. z; in (3.1.3), we obtain

Lo(Viu)(@)+ Y Vi logm(@)Viu(z) = 65V ¢i(xs).
k

Recall H(z) = —V?logm(z). Multiplying the above equality from left by (Vju(:p))T,
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and by ¢; € Lip; and the diagonal dominance assumption, we have

(Vju(@)" La(Vju)(z)
= zk:(vju(fﬂ)) Hj,(x)Viu(z) + 6i5 (Vju(x))” Vigi(zi) (33.11)
M |Viu(@) P = > M|V u(@) || Viu(@)|| = 65|V ju(@)]].
k:k#j

The key is to show the maximum principle still holds for the operator £, when acting
on a vector-valued function. Consider x where ||V u(z)||2 reaches its maximum,

ie. |[Vju(x)||2 = ||Vjul| «. The first order optimality condition reads
=V (|V5u(@)3) = 29V, u(z) - Vju(w)
and the second order optimality condition reads
0> A (IV,u(@)[3) = 2V Vu(@) [ +2(Vu(2)) AV ju(a)
Thus, (Vju(x))TAV,u(z) < 0. Under these conditions,
(Vju(2)) "L (T5u(2)) = (V5u(e) AV u(z) + ¥ log 7(x) - YV ju() - Vyu(z) <0,
Hence, at the maximum point (3.3.11) reads

0> Mj; | Viu(@)|* = Y Ml Viu(@) || Viu(@)| = 6|V ju(x)].

If |V ul|ze > 0, it holds that

0ij = Mj; [|[Vju(z Z M| Viu(z)|.
k:k#j

Taking summation over j € Z, := {j € [b] : ||V, ul|z= > 0} gives

1> Z dij > Z M;; ||V ju(x)|| — Z M ||V eu(z) ||

JEL+ JEL+ F:k#j
2 Z M;; |V ju(z ZMJkHka z)||
k#j
ZZ(ij—ZMkj)||VU =) IV ul)
JE[b] k:k#j j€b]
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Here we use the diagonal dominance assumption. The conclusion follows. O]

3.4 Locality in Langevin semigroup

In the previous sections, we developed the marginal Stein’s method, which is used
to prove marginal transport inequalities and the exponential decay of correlations
for localized distributions. In this section, we show that this method can be
interpreted as a quantification of the locality in the Langevin semigroup. It is well
known that when the target distribution is strongly log-concave, the associated
Langevin semigroup is exponential contractive in the H'-norm. To study the
locality property, we adjust the norm to locality-aware variants. We show that
the Langevin semigroup is eventually exponentially contractive under these new
norms. We will discuss two applications of this eventual exponential contraction,

the d-locality and the convergence of Langevin dynamics under the W; o-distance.

3.4.1 Langevin semigroup

Consider the (overdamped) Langevin dynamics
dX? = Viegn(X&)dt + vV2dW,, X& =z, (3.4.1)

where 7 is a target distribution and W; is a standard Brownian motion. The
Langevin semigroup {P;}:>¢ is defined as the transition semigroup of the Langevin
dynamics, i.e., for t > 0,

Pu(z) = E[u(X]))]. (3.4.2)

It is straightforward to verify that {P;}:>o is a Markov semigroup, i.e.
e (Semigroup) Py =id, Psy; = Pso P, for all s,t > 0.
e (Markovian) P,1 =1, and P,f > 0if f > 0.

Note its infinitesimal generator is L, i.e.,

Pu(x) — u(z)

Lou(x) = %g%

= Vlogm(x) - Vu(z) + Au(z). (3.4.3)
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Exponential contraction

Suppose 7 is strongly log-concave, i.e.
—V?logm(x) = ml.

It is known that [3] that the Langevin semigroup is exponentially contractive. Here
we use the gradient bound (see Section 3.3 in [3]) to illustrate it.
For any u € H}(7) = {u € H'(x) : Ex[u] = 0} (3.1.5), notice
d 2
T |VPul|. =2(VPu, VL Pu)_

= 2(VPu, Ly (VPu)), +2(VPu,V>logm(z) - VPu)_
< — 2| V2P’ = 2m ||V P> < —2m |V P>

Here we denote Lv = (Lvy,...Lyg) if v = (v1,...,v4) is a vector-valued function,
and use the fact that (f, L,g). = —(Vf,Vg) . Then we obtain

IV P2 < e 2™ || Vulf2.

This implies that the P, is exponentially contractive in the H'-norm. In the

operator form, we have

P
1Bl e (3.4.4)

1P| 1t () 1 () 5= SUD
Hg(m)—Hg () 0£uc H () HUHH&(N)

Gradient estimate of Stein equation

The solution to Stein equation can be formally written as

w=L;" (¢ —Edlg]). (3.4.5)

Under the settings in this thesis (see Section 3.1.2), £

—1 can be regarded as an

operator in H} (). The Poincaré inequality implies

1L a2 ey 12 () < Crr-
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This can be verified directly: for u, ¢ € H} (),

lallzry(my = VUl 20y = = (Latt 1), = = (6 = Ex[g],u),
< [l¢ - Ew[¢]HL2(w) HuHLQ(’JT) < Cpi HV¢HL2(W) HVU’HL2(T{‘) :

Under stronger assumption, i.e. the log-concavity condition, this bound can be

directly obtained from the exponential contraction. Note formally,

L= —/ etbrdt = —/ Pydt. (3.4.6)
0 0

Due to the exponential contraction, the above equation holds as a strict identity in
the H'-norm, i.e. for ¢ € H}(m),

u(e) = L3¢ = — / " Pg(a)dt = / T [p(X7)]d

This is precisely Lemma 3.1. As a result,

(o.) o0 1
1 —mt
||£7r ||H3(7T)—>H§(7r) S /0 ”PtHH&(W)ﬁHé(W) dt < /0 e Mdt = —. (3.4.7)

m

3.4.2 Eventual exponential contraction

To study the locality structure, we introduce two different metrics as variants of
the H'-norm used in the previous section. The first is the £*(Lip)-(semi)norm used
in Definition 3.1:

[l iy = D IVl oo - (3.4.8)
Jelb]
The other is a weaker version, the ||, -(semi)norm:

[l 00 = esssup Y [|Vu(z)] . (3.4.9)
T jeb)

The reason for the name ||, . is given in Lemma 3.5. Under the new norm, we
show that the Langevin semigroup is eventually exponentially contractive when the
target distribution is strongly log-concave and localized. This is in contrast to the
exponential contraction in the H'-norm, which is gauranteed by a positive spectral
gap. While under the new norm, the generator no longer exhibits a spectral gap,
and one can at most establish eventual exponential contraction. This behavior

arises from the interplay between two opposing effects: the exponential decay due
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to the strong log-concavity and the slower diffusion due to the locality of the graph.

We prove the following theorem.

Theorem 3.8. Let G be a (s, v)-local graph. Suppose m € P(R?) is localized on G,
and satisfies for some 0 <m < M < oo,

Ve € RY,  mI < —V%logn(x) < MI.

Then it holds that for all t > 0,

max{ HPtHHel(Lip)*)Hel(Lip) ’ |’Pt|||’|Lip,w4)|'|Lip,oo } < Mt’ (3'4'10)
where
M, = e (1 +sp,(H(M —m))), p(z):=e" rk%. (3.4.11)
r=0 )

As a corollary, denote kK = %, and we have

- - svlk?
max{ ||L7T1|||'|£1(Lip)*>|‘|21(LiP) ’ HﬁﬂlH|-|Lip’wﬁ|.‘Lip’m } < m (3412)

Remark 3.5. The bound M; is not necessarily monotone in . As M; is a product
of a polynomial and an exponential function in ¢, it typically first increases and
then decreases. This explains the term eventual exponential contraction.

We also comment that this is not an artifact of the proof. The exponential
term comes from the strong log-concavity, while the polynomial term describes the
diffusion in the graph, which is due to the polynomial growth of the neighborhood

volume in the graph.

Proof. Let u € H}(r). By definition, we have
Fuu(z) = Elu(X7)],
where X} is the path solution of the Langevin dynamics with initial state x. Note

ViPu(z) = > E[Vy X[ - Viu(X7)).
ke[b]
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By the same argument as in the proof of Theorem 3.1, we have (cf. (3.3.10))

0 trM_ r
IV, X7 < e S T mm)

r!

T:dG(j7k)
Therefore, using the (s, v)-locality, we have
|Ptu|€1(L1p . Z ||v Ptu”LOO
J€E[b]
< D> B[V, X5 IV ru(X)]]
J:kelb]
= t"(M —m)
3 Tl [ 3 LG
kel[b] jelb] r=dg(j;k) '
_ (M —m) & t"(M —m)"
S\ )L S SR E
kelb] r=0 ' r=1 j:1<dg(j,k)<r '

o (M — r
< e Mt Z IVt oo |7 4 Zsr”—( m)

|
ke(b] L r=1 "
< Julpipy e™ (1 4spu(H(M —m))) .
where we denote
e r
pr(x) =e" rk%. (3.4.13)
r=0 ’

It is verified in Lemma 3.4 that py is a monic polynomial of degree k. We obtain

< e (14 sp, (H(M — m))) =: M.

”PtH|‘\e1(Lip)H|'|€1(Lip) -
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For the |-|j;, -norm, the proof is similar:

| Prtlpp o0 i= €SSSup Z |V Pau(z)||

T

Jjelb]
< esssup Z E [”vantka IV ru(XE)|]
T jkelb]

_ = (M —m)
< esssupE Y [ Via(XP)|| [D e M Y %
z kelb) jEb] r=dg(jk) '
< esssupE Z | Viu(X7)] - My

v keb]

< M{E |esssup Z [Viu(XO| < Mefuliip o -
T kelb)

< M.

For the corollary, we note that the operator £-! can be expressed as

L= —/ P,dt.
0

Therefore, by the definition of My and Lemma 3.6, we have

Thus we proved that ||Pt||"|L'

1p,oo_>|"Lip,oo

oo

[e.9]
-1
I |||"61(Lip)_>|"e1(mp> = /0 HPtH"|€1<Lip>—>|'|e1<mp) dt S/0 Micl

[e.9]

< ( _ N t"(M —m)"
_ mt Mt v \A )
= /0 <e + se E r I ) dt

r=1

1

m 1

1 m —v—1
g -
_m—i—My i 1 i (Lemma 3.6)

1

—(1+

m

Here we denote x = 2. The proof is similar for the |-|;, _ -norm. O]
m ip,00

Lemma 3.4. py(z) :=e*> 2, ka—: is a monic polynomial of degree k.
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Proof. Tt can be directly verified that

i) = (57 ) (@a(a)) = ¢ (o) + (o)
Therefore,
pen(a) = () (), mole) = 1

The conclusion follows by standard induction. O]

3.4.3 Applications
d-locality

A direct result of the above theorem is the d-locality of Markov random field on
local graph (Theorem 3.1). Note the test function ¢(z) = ¢;(2;), [¢ilp;, < 1 satisfies

1Bloip) = D IVidll oo = @il < 1

JEb]
Therefore, the solution u to Stein equation L£,u = ¢ — E[¢] satisfies

sv!KkY

Z ||V UHLOO |u|€1 (Lip) = HE 1H£1 (Lip)—¢'(Lip) |¢|€1 (Lip) <

JE[b]

m

Convergence of Langevin dynamics under W

In this section, we establish the convergence of the Langevin dynamics under the
W, -distance. W, ,-distance, introduced in [20], is the p-Wasserstein distance

with /,-norm as the underlying metric. Specifically, we define

Wyt =it ([l = ulftrto) Y sa

~eIl(p

Here II(j, v) denotes the set of couplings between p and v. Note we use the norm

[ = ylly o0 = max|lz; — y;ll, (3.4.15)
JEb]
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as the base metric instead of ||-|| in the original definition in [20]. This is for
consistency with the block decomposition x = (z1,...,xp). One can simply take
d; =1 to go back to the original definition.

Note W,, » is stronger than the marginal W, distance, i.e.

m?b}](W p(15, V) < Wooo (11, v).

Simply note that

1/p
ekl Wtz ([l ularea) = W)

We focus on the case p = 1, which admits a duality representation.

Lemma 3.5. For pu,v € Py(RY), it holds that

Wl,OO(:ua V) = Sup [EH[¢] - EV[¢H ) (3416)

9l Lip.co <1

where we denote the |-, . -seminorm

Bhapoe = 50 DL s 3 9,0(0)]. (3417
T#Y ||ZC - y||2,oo €T j€lb]
Proof. (3.4.16) directly follows the Kantorovich-Rubinstein duality [113]. For the
second equality, first note Vz,y € R,

1
o) — d(y) = / SOV50((1— )+ 1) - (15— y)dt

0

J€[b]
1
< =yl / S IV56((1 - £ + ty) | e
0 R
JE(b]
< o=yl esssup 3 V()]
T jelb)

This implies that |¢[;;, ., < esssup, > ;e [V 0(2)]. Conversely, for any x € RY,
denote t € R? s.t. t; = V;p(x)/ |[V;o(x)]l. Note [|t]l, , = 1, and we have for
sufficiently small h > 0,

¢(x + ht) — thTv¢ —hZHV(b )|+ o(h).
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Sz +ht) — $(z) &
x = Z IV;6(2)]| + o(1).

= |¢’Lip,oo 2

Since x and h are arbitrary, we have [@|;, ., > esssup, > e, [[Vi0(2)]- O

Next we state the convergence theorem.

Theorem 3.9. Let G be a (s, v)-local graph. Suppose m € P(R?) is localized on G,
and satisfies for some 0 <m < M < oo,

vz e RY  ml < —V?logm(z) <= MI.

Consider the Langevin dynamics for m with initial distribution pg, and let j; be the
distribution of Xi*. Then for allt > 0,

Wi oo (e, ) < MW o6 (p0, ), (3.4.18)

where My is defined in (3.4.11).

Proof. Let ¢ € Hy(m) be any test function s.t. [¢;, o < 1. By Theorem 3.8,

|Pt¢|Lip,oo S Mt |¢|Lip,oo S Mt'

Therefore, by Lemma 3.5, we have

Wl,oo (Ntv 71') - sup [Eut [¢] - Eﬂ' [¢H

1l 1ip,00 <1
- sup []EMO [Pt¢] —E; [Pt(b”
1ip,00 <1
<My sup (B[] — Eq[¢]] = MWy oo (10, 7).
Y] Lip, 00 <1
This completes the proof. H

Remark 3.6. Since under W ,-norm, the Langevin dynamics is not contractive
in the usual sense, one cannot expect one-step coupling to work without further
conditions. This is the main reason for the multistep coupling used in [20]. In fact,

[20] essentially uses a discrete version of Theorem 3.9 by taking ¢ larger so that
M, < 1.
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3.5 Proofs

3.5.1 Proof of Theorem 3.4

Proof of Theorem 3.4. The proof is based on that of Theorem 3.1 and Theorem 3.3.
We only present the different parts for the multiple block case.
For any index set I C [b], denote d; =), ; d;. Then by definition,

Wi o) = sup / b1(er) (mr(ar) — my(er) dar.
¢r€Lip, (R?T)

Given ¢y, let u(x) solve the marginal Stein equation
Lou(z) = ¢r(xr) — Exlor(zr)].
Similarly as in Lemma 3.1, it holds that
IVl < | TRV [ Vor(xE|] dt < / TRV X,

where X[ is the solution to the Langevin dynamics for 7’ with initial condition x.
Notice ||V X7/l < D 2ier IV XE|l, we obtain that

IVully = S IV5u@)| < S E / SOVt < S8 = a1,
J€[b] JE[b]

icl iel
Using the same arguments in Theorem 3.3, we obtain
W1(7TI> 7‘-}) < ||vu||00,1 ’ mja“X ||VJ 10g T — Vj 10g7T||L1(7T)
< || - max ||V log 7" — V;log | 11, -
j
This completes the proof. O
3.5.2 Lemmas

Lemma 3.6. For anyt >0 and x € (0,1), it holds that

Y K (L—a)F <2P(t+ Dz (1 - x).

E>1

When t € N, the factor 2 can be omitted, i.e. 3~  k'(1 — )" <tz (1 —z).
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Proof. We prove by induction. For ¢ = 0, it holds that

DL

k>1

For ¢t € (0,1), first notice by Abel transformation,

Y Kl-a)f =) K [1-2)f - Q-2 = (K- (k-1)) (1 -2l

k>1 k>1 k>1

Therefore, since k! — (k —1)! < t(k —1)""! when t € (0,1) and k > 2,
d K1 -2t < [1—93 +Z x)k]

k>1
z (1 —2) 1+tz tlkl)]

k>2

IN

IN

zH (1 — a:) 1+ t/ yt_le_ymdyl
i 0

=z ' (1—2) (1+t0(t)z™")
< 2(t+ D211 —2).

Here we use tI'(t) = I'(t + 1) and T'(¢ + 1)z~ > 1 in the last step. This verifies
the case t € [0,1). Suppose the inequality holds for ¢ — 1 > 0, then using the same
methods,

Z/{:tl—x Z DY) (1 — )"

k>1 k>1

z Z th =11 — x)k

k>1
<z~ 20(t) 2~ — 1)
=2 (t+ Dz 11 — ).

IN

Here the first inequality follows from the elementary inequality k! — (k — 1)t < tk'™1
when ¢t > 1, and the second inequality follows from induction hypothesis. The
refined inequality for t € N can be obtained similarly. This completes the proof. [

Lemma 3.7. Suppose G; € R%b s a time-dependent nonnegative matriz satisfying

d
N < —
dth < —MGy,
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where < is in the entrywise sense, and M € R°*P is c-diagonal dominant with

non-positive off-diagonal entries, i.e. Vi, j € [bl,i # j,
Z |Mij| + ¢ < My; Mg <0.
JiF#i

Then for any t > 0, it holds

”GtHoo < e_Ct”GOHOO-

Proof. Denote G¢ := e“G, then

d d
aGg = GCt <EGT’ + CGt) < eCt (—MGt -+ CGt) = (—M + CI) Gg

Multiple both sides by 1 = (1,...,1)" € RP from right,

%051 < (=M + cI) GE1.

This operator preserves the inequality since it is equivalent to taking summation

over row indices. We claim that
Vi >0, [|Gil]le < ||GG1]c, (3.5.1)
which is a reformulation of |G|, < ¢ |Gy, since G§ € RY,, and
eGilloo = Gl = miaXZGf(iaj) = [|Gi1 |-
j

We prove (3.5.1) by contraction. Suppose (3.5.1) is false, then 3s > 0 and i s.t.

d
SGE): >0, (GE1): = |G
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On the other hand, notice by assumption on M,

d C C
3 (CGsl)i < (=Mii +¢) (Gi1) + > (M) (G
Jii
< (=M + ) )i + ) (= M;;)(Ga1);
Jij#i
= | —Ma+c+ ) [Myl | (G51); <0
Jiti

Contradiction. This proves our result.
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Chapter 4

Localization Method in Sampling

The previous chapters discuss the theoretical properties of the locality structure.
In essence, the locality structure induces a form of low-dimensionality, so that it
is natural to study it algorithmically for high dimensional sampling problems. In
this chapter, we will review some of the existing methods and discuss the general
idea of localized sampling. We propose a framework to localize existing samplers,
which turns a high-dimensional problem into many low-dimensional subproblems.
We will then discuss its computational advantages, i.e. localized and parallelizable
implementation; and its theoretical advantages, i.e. lower statistical complexity
and controllable localization error. Specific examples of localized sampling will be

discussed in the next two chapters.

4.1 Review on existing localized samplers

In this section, we review two existing methods for localized sampling, including the
localized versions of SVGD [77, 115, 121] and Schrédinger bridge sampler [55, 57].
Detailed discussions on the localized MALA [95, 94, 81, 110] will be introduced in
Chapter 5.

4.1.1 Message passing Stein variational gradient descent

Stein variational gradient descent (SVGD) [77] is a particle method to sample
from a target distribution via a gradient flow [76, 22]. It uses an ensemble of

particles {x(i) N | to approximate the target distribution 7, and evolves the particles
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according to the following dynamics

N
d 1 . .
— 0 = l P (@) (D) (@) (D)
3% = = E_ [Vlogﬂ Ve(2\, 2 + Vik(z', x )] :

where k(z,y) is a positive definite kernel function. The mean field limit of the

velocity field is (denote p as the mean field measure of the particles)

v=E,[Viogr(2)k(z, ) + Vik(z, )] = E, lk:(a:, )V log Zgﬂ .

Notice —Vlog% is the first variation of the KL divergence, i.e.
7T o
Vleg — = ——KL (pf|7) .
I op

So that SVGD can be viewed as a gradient flow of KL (-||7) w.r.t. some kernelized

metric (see [22]). Note also v admits a variational form [76]

v = arg max —iKL ((id + @) g 7)
el <1 &

Here ||¢||,, denotes the RKHS norm of the vector field ¢p. Here H = HJ? is the
corresponding d x 1 vector-valued RKHS, and H is the RKHS of the kernel k.

The use of a kernel £ makes SVGD difficult to scale to high dimensions. For
instance, the widely used Gaussian kernel k(z,y) = N(z — 4;0,0%I) decays ex-
ponentially in the distance ||z — y||, which is of @(+/d) in high dimensions. This
makes the computation very sensitive to the error and the hyperparameters. It is
also reported in [121] that SVGD tends to underestimate the marginal variance
when dimensions are high.

To address the dimension issue, [115, 121] concurrently proposed a localized
version of SVGD, which uses localized kernels inspired by the locality structure.

[121] propose to consider a coordinate-wise velocity field that solves

d
vj = argmax | —=——KL ((id + e;)pp|7)]| ,
el <1 L Ge (4.1.1)

where ¢](I) = (07 707¢j<xj | x—j)707"' 7())

Here H; is some localized RKHS to be determined later. Since ¢; is non-zero only
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at the j-th component, it holds that

CKL((id+ ) pnllm) = KL (0 + 650 |2l | a5)lnCay | 7).

If 7 is localized, 7(x; | v_;) = m(x; | zn;); and as an approximation of m, y should
approximately satisfy the same property. So that the quantities to be optimized in
(4.1.1) are approximately independent of z_,;,. Therefore, one can enforce ¢; to

be independent of z_;. Take the local kernel

]Cj = k]($N77yN7)

Consider the vector-valued RKHS H; = Hfgj, where H; is the RKHS of the

kernel k;. With this choice, the optimal v} of (4.1.1) is

m(y;lun-)

ki (yn; 2 ) Vy, log
’ P yslyn-)

vi(zn;) = By

=By [Vyj log m(y;lyn ks (yns» o) + Vik; (yNMNj)] :

The resulted localized SVGD is: Vj € [b] and [ € [N],

N
E:{;él) = %Z lvx? log W(:UE”MX%_)I{:](:U%,:U%) + Vlkj(:c/(@,x/(\l/)j)} . (4.1.2)
i=1
It is also called graphical SVGD in [115]. Note that the localized SVGD (4.1.2) can
be regarded as a collection of b SVGD velocity fields (with only j-th component
used) for the marginal distributions 7(zx;). This is a typical way of localizing
samplers, that is, taking the transition kernel for j-th component as the j-th
component of the original transition kernel for the marginal distribution 7 (x Nj)-
It is almost obvious that the localized SVGD (4.1.2) no longer suffers from the
dimension issues, since the localized flow is low dimensional for each j. All the
computations are also localized and thus parallelizable. Numerical experiments in
[115, 121] validate the effectiveness of the localized SVGD compared to the vanilla
SVGD in high dimensions.
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4.1.2 Localized Schrodinger bridge sampler

Schrédinger bridge (SB) sampler [55] aims to learn a transition kernel P.(z,y) that
is invariant under the target distribution 7, given data {X®}¥ | sampled from 7.
The learned transition kernel P,(x,y) is then used to sample from 7.

[55] proposes to construct P. by approximating the SB solution @, w.r.t. 7 and
a reference transition kernel T,. Specifically, [55] takes T, as the Gaussian kernel
T(x,y) = N(y; x, 2¢l), and the according SB problem [88, 21] is to find a transition
kernel Q.(z,y) s.t.

Qc = argmin KL (7 (2)Q(z, y) || (2)Tc(z,y))
Q:mQ=m

The solution is of the form
Qe(x7 y) = QDG(ZL’)TE(l’, y)we(y)ﬂ-(y)a

and ., 1. can be solved by the Sinkhorn algorithm [36, 55]. Note ¢, = 1, since T

is symmetric. Finally, P, can be taken as the Gaussian approximation of (), i.e.

PeSB<I7y) =Te(me(z),y), me(r) = Ergq. [ylz].

Once 1), is obtained, m, can be explicitly computed by
me(x) = /er(xa y>dy = Eywﬂ'[we(xa y)y]a

we(z,y) = %(y) = @c(2)Te(z, ) (y) = fTéé(j)’zjzbyE)(i()y)dy

The discretized version can be easily obtained for numerical implementation. Note

when € is small, PESB will be a good approximation of ()., and thus can be ap-
proximately used as a MCMC kernel to sample 7. Also note {¢(X@)}Y | can be
computed offline using the Sinkhorn algorithm, and in sampling, only w(z, X (i))
needs to be computed, which is relatively cheaper. We mention that P€SB can
be regarded as an approximation of exp(eL;) (see (3.1.1)), which is more stable
compared to the Euler-Maruyama discretization of the Langevin dynamics [55].
However, learning a generic high dimensional transition kernel P, faces the curse

of dimensionality. To reduce the sample complexity, [56] proposes the localized SB

69



(LSB) sampler by using the localized transition kernel:

PeLSB(x7y> = H N<y5a m@s(x,/\[s), 26]), (413)
s€(d]

where N denotes the neighbors of s, and mc s is obtained by
me,s(x/\/'s) - /ysQe,s(stayNs)dyNs-
Here Q). s solves the SB problem for the marginal distribution m(xy,) with

T, s(xn, yn,) = N(yns; oo, 2€1).

Detailed derivation can be found in [56].

As in the localized SVGD, the LSB learns a collection of d SB samplers for the
marginal distributions 7(zy,), and use the learned transition kernels to sample in
a Gibbs way. Since the LSB turns a high-dimensional kernel learning problem into
d low-dimensional ones, the sample complexity is significantly reduced.

4.2 Framework for designing localized samplers

We summarize the localized sampling methods as a general framework. Formally,

consider a classical sampler in the form of a transition kernel
x ~ P(xo,z), x9~ m0.

Here my is the initial distribution or the prior distribution, which is easier to be
sampled from, and P(zg, x) is the sampling kernel that transforms 7y to the target

distribution 7. The kernel P is usually a progressive Markov kernel, i.e.
P=PioPyo---0Prp.
For instance, for unadjusted Langevin algorithm (ULA), the transition kernel is

Pi(z,y) = N(y;z +7Vlogn(x),271), V1I<t<T.
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Due to the locality structure, the transition kernel of many samplers can be written
or approximated as

Ploc(a:,y) = H Pri(xi, yi | IN[)- (4.2.1)

i€[b]

Here we use the block decomposition form, r» € Z is the localization radius, and
N! is the r-neighborhood (2.1.2). The simplest way to construct (4.2.1) is to take
Pii(2i,yi | xar) as the conditional transition kernel for the i-th component of the
full marginal transition kernel Py ;(xar, yar) obtained by the original sampler on
the marginal distribution 7(zxr). The localized SVGD (with time discretization)
and the localized SB sampler can both be fitted into this framework. It can be
observed directly from (4.1.2) and (4.1.3). And we will see in the following two
chapters that the framework also applies to other localized samplers.

The advantanges of the localized sampler (4.2.1) include:

e Localized and parallelizable: to compute P;; in the localized sampler, only
local information of z is required (i.e. zx:). This reduces the computational
complexity of the sampler, and also allows parallel implementation. Examples

of local and parallel implementation can be found in Section 5.3.4.

e Lower statistical complexity: the transition kernel is usually learned from
the data, and since the localized sampler is a collection of b low-dimensional
samplers, the sample complexity is significantly reduced compared to the
original sampler. Examples of the statistical analysis of the localized sampler

can be found in Section 6.2.3.

However, the localized sampler will introduce localization error in the sampled
distribution. The localization error can be controlled using the marginal Stein’s
method. Due to the exponential correlation decay in the locality structure, the
localization error typically decays exponentially in the localization radius r. An
example of the localization error analysis can be found in Section 6.2.2. The
exponential decay can also be numerically observed and validated.

We also comment that in practice, we can tune the localization radius r in the
localized sampler to balance the localization error and the statistical error, similar
to the bias-variance trade-off. We will show both theoretically and numerically
that an appropriate localization radius r can indeed reduce the overall error in the

sampled distribution, see Section 6.2.3 and Section 6.3.
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Chapter 5

Localized Metropolis-adjusted
Langevin Algorithm

In this chapter, we discuss the MALA-within-Gibbs (MLwG) sampler, which is the
localized Metropolis-adjusted Langevin algorithm (MALA). The vanilla MALA, as
a typical Markov chain Monte Carlo (MCMC) method, is slow in high dimensional
problems; the step length of MALA should be 7 = O(d~/3) for d dimensional
problems to obtain a non-degenerate acceptance rate. MLwG aims to mitigate
the dimension problem by exploiting the locality structure. By using MALA step
within the Gibbs sampler, the step length of MLwG can be chosen independently of
the dimension d. The acceptance rate and the convergence rate are also guaranteed
to be dimension independent. Through an image deblurring problem, we show
that MLwG can be implemented in a local and parallel way. A dimension-free

approximation result is also discussed.

5.1 MALA-within-Gibbs

5.1.1 Metropolis-adjusted Langevin algorithm

Metropolis-adjusted Langevin algorithm (MALA) [95, 94] samples a target distri-
bution 7 € P(R?) by using Langevin dynamics corrected by a Metropolis-Hastings

step. It consists of two steps:

e Langevin step: draw a proposal from the Langevin dynamics, i.e.,

z=x+7Vlegn(x) +V2r¢, €~ N(0,1),
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e Metropolis step: accept the proposal z with probability

a(x,z) = min {1,
where we denote the proposal kernel as

Q(z,2) = N(z; 2 + 7V logm(z),271). (5.1.1)

The algorithm is summarized in Algorithm 1.

Algorithm 1 MALA sampler

Input: Initial state 2° € RY, step size 7 > 0, number of iterations 7.
1: forn=0toT —1do
2: Draw proposal

2" =" + 7V Iogm(a") + V21", £ ~ N(0, ).

3: Compute acceptance probability (cf. (5.1.1))

oo =i {1 TGRS

4: Draw a uniform random variable ¢™ ~ U[0, 1].
5: if (" < (2™, 2") then

6: Accept the proposal: z"t! = 2"

7: else

8: Reject the proposal: 2! = 2",

9: end if

10: end for

Output: Sampled chain {2"}T_,.

The transition kernel of MALA is given by

Pyara(z, 2) = a(z, 2)Q(z, 2) + 0.(2) /(1 —a(x, 2))Q(x, z)dz. (5.1.2)

It can be directly verified that 7 is the stationary distribution of Pyiar,a. Under
strong log-concavity assumption, it is established in [95] that MALA converges
exponentially fast to the target distribution .

To obtain a non-degenerate acceptance rate in high dimensional problems, it
is known [94, 89] that the step length 7 should scale as 7 = O(d~/3). When

the dimension d is large, the step length 7 becomes small, resulting in a slow
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convergence rate.

5.1.2 MALA-within-Gibbs

MALA-within-Gibbs (MLwG) is a localized version of MALA, which is a Gibbs
sampler with blockwise MALA update. In Gibbs sampling, one draws samples in a
blockwise manner from the conditional distributions of the target distribution. To
be specific, one first determine the block index j in a deterministic or stochastic

way, and then draw a sample 2’ s.t.

‘(E/—j:l‘*j? x;NPJ(%afE; |m*j)7

and Pj(z;, 2} | x_;) is a transition kernel that is invariant under the conditional
distribution 7j(x; | x_;). It is straightforward to verify that = is the stationary
distribution of the Gibbs sampler [49].

In MLwG, P; is specified as the (block) MALA transition kernel, i.e., one first

draw a proposal z s.t.
zj=a_j, zj=x;+7Vjlogm(x)+V2r&, &~ N(0,1y).

Then, one accepts the proposal with probability

m(2)Q;(z, ;| z—j) } |

m(2)Qj(xj, 25 | —5)

a;(z,z) = min {1,
where Q;(x;,z; | x_;) is the proposal kernel for the j-th block
Qj(xj,zj | v—j) = N(2j; 25 + 7V logm(xj, x_;),2714,). (5.1.3)

We now establish some notation for MLwG. For simplicity, we consider the
case where the blocks are updated sequentially. Other block updating rules like
randomized sequences could also be employed, but are not discussed here. We
call a complete iteration in which all blocks are updated a cycle and denote by
2™ € R? the state during the n-th cycle before the update of the j-th block. To

illustrate this notation, consider the following presentation of block updates:

I S

TV TV
1st cycle 2nd cycle

2b+1 _ 2

g
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Notice also that we introduce x™ to denote the state after the n-th cycle.

The algorithm is summarized in Algorithm 2.

Algorithm 2 MLwG sampler

Input: Initial state 2° € R?, step size 7 > 0, number of iterations N.
1: Set 19 = 20,
2: forn=1to N do
3: for j =1tobdo

4: Draw proposal 2™/ s.t. zfjj = xT_LJJ

and

2 = rVlog m(a™) + V27, €M~ N0, 1)),

J J

5: Compute acceptance probability (cf. (5.1.3))

n(9)Qy (2 | ) }

m(en) Q57 57 a)

a(z™, 2™7) = min {1,
j

6: Draw a uniform random variable ("7 ~ U0, 1].
T: if (" < a(z™7,2™7) then

8: Accept the proposal: 2™/t = zmJ,

9: else
10: Reject the proposal: 2™/t = g™7,
11: end if
12: end for
13: Set g"t10 = gn = gmb+l
14: end for

Output: Sampled chain {2"})_.

Discussions on the implementation strategies, e.g. the choice of step length 7,

local and parallel computation in MLwG will be given in Section 5.3.

5.2 Dimensional-free properties

In this section, we show that if the target distribution is localized, the acceptance
rate and the convergence rate of MLwG are independent of the total dimension d.
This allows the step length 7 to be chosen independently of d, which is a significant
improvement over the vanilla MALA (7 = O(d~/3)).

Before introducing the main results, we denote for brevity

vj(x) == V,logm(x). (5.2.1)
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5.2.1 Acceptance rate

Theorem 5.1. Suppose © € P(R?) is localized on a (s,v)-local graph G. Assume
Viebl, (vl <M, [Vl <H, |V"Uj|Lip <L
Then there exists some M > 0 depending only on M;H,L and s, s.t.
Eg,j [a(a™, 2™7)] > 1 — M7?2, (5.2.2)

Remark 5.1. (1) Due to the locality structure, M, H, L are typically dimensional
independent. Since v; = V;logm is only a function of x,,, its derivates and itself
are all low-dimensional functions.

(2) These boundedness assumptions are taken from [110]. It usually does not
hold for unbounded support, but it is only introduced for simplicity of analysis and
may not be required in practice. On the other hand, for unbounded support, one
can consider the averaged acceptance rate where 2™ follows from some distribution
that decays fast enough, and a certified lower bound is still obtainable.

(3) The bound in [110] is 1 — M+/7, and here we improve it to 1 — M73/2,
We note that the rate 3/2 is optimal, which can be observed directly from the

asymptotic expansion of the acceptance rate.

Proof of Theorem 5.1. The claim is an immediate result of Lemma 5.1. Consider
a; defined in (5.4.10). By definition, we have

o™, 27 = min {1, exp(a; (2", ) }
where z;” = x;” + 7 (2™7) + v/ 27'5?”. By Lemma 5.1,

1— Ol(xn,f, z",j) = exp <min{()7 a; (xn,j’ 5;%])})

< Jaj (@™, &) < 72(My+ M| 1%).

Therefore, the result follows by taking expectation w.r.t. f;”j . H

5.2.2 Convergence rate

MLwG also guarantees a dimension independent convergence rate for log-concave

localized distributions. To adapt to the block structure, the following blockwise
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log-concave condition is introduced (see Assumption 3.4 in [110]).

Definition 5.1. A distribution 7 € P(R?) is called blockwise \gr-log-concave
(Ag > 0) if there exists a symmetric matrix H € Rb*b st H = \gl, and

Vi, j € [bl,i # j,
Vo € RY, VJQ-]- logm(x) X —Hj;l4,, HV?J. log m(z)|| < —Hj;.
Note in the above defintiion, it is implicitly required that
H;; > 0; Vi#j, Hj; <0.

For more discussions on the blockwise log-concavity, we refer to [110]. In Section 5.3,
we will verify this condition in an image deblurring problem with appropriate
parameter choices.

Now we state the main theorem.

Theorem 5.2. Suppose m € P(RY) is blockwise \gr-log-concave, and is localized

on a (s,v)-local graph G. Assume
viebl lvjllpe <M, [[Vujll e <H, [V, <L

Then there exist some p, 79 > 0 that are independent of d s.t. for all T € (0, 79], we

can couple two MLwG chains {z"}5°, and {y"}5, s.t.
1/2 1/2
(S Elg-*) " <a-mr (S ElS-4IT)"  623)
j€[b) j€lb]

As a corollary, take y* ~ m, and we show that x™ converges to m exponentially fast

with dimension independent rate.
Proofs are delayed to Section 5.4.1.

Remark 5.2. (1) The convergence result is based on the maximal coupling of two
MLwG chains as in [110]. In brief, the two chains z", 3" are coupled to share in
each step the same g;” in the proposal and the random variable ("7 ~ (0, 1) used
to determine the acceptance of proposals (See Algorithm 2).

(2) Under the locality assumption, the H matrix in the blockwise A-log-concave

condition can be made to satisfy Vi # j, H;; = 0. We use this condition in the
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proof for simplicity. One can also allow it to be nonzero, and the proof still holds

with minor modifications.

5.3 Application in an image deblurring problem

In this section, we consider applying MLwG to an image deblurring problem. Due
to the use of a total variation (TV) regularization [98, 46], the prior distribution
o is non-smooth, and thus one cannot directly use MALA proposal. To address
this, we propose to use a local smoothing of the prior distribution, and then apply
MLwG to the smoothed distribution.

The locality structure in the image deblurring problem guarantees that the
approximation error can be uniformly bounded over the image, and is independent of
the dimension. We will show how to implement an efficient local and parallel MLwG
sampling algorithm by providing the local target densities and their gradients for
the block updates. More details can be found in [46].

5.3.1 Problem setting

Consider the classic image deconvolution problem with TV regularization, e.g., [87],

and assume that a blurred and noisy image y € R? is obtained by

Yy = Amtrue + €. (531)

Here 7o € R? is the ‘true’ image, € ~ N(0, \"11;), and A € R?*?is the convolution
operator. For instance, one can construct A via the discrete point spread function
(PSF). Assume that the discrete PSF has radius r > 0, then Az convolves each
pixel with the surrounding (2r + 1)? pixels.

The inverse problem of (5.3.1) is to recover a solution that is close to Tirye
from the data y. Computing a solution is typically not straightforward due to
the ill-posedness of the problem. For this reason, we employ the edge-preserving
TV regularization introduced in [98], which is a commonly used regularization

technique in image reconstruction. For discretized images, it reads

d
v h
lolloy = 3/ (DY2)2 + (DPay2,
s=1

where D) € R%*4 and DM ¢ R4 are finite difference matrices cooresponding to
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the vertical and horizontal differences of the pixels resp. Specifically,

DY =1, ® D,,
where D, =
D" =D, ® I,

—1

L d [nxn]

Here n = v/d and ® denotes the Kronecker product. Note we use Dirichlet boundary
conditions for the finite difference matrices. Other boundary conditions can be
used by slight modification of the algorithm and the analysis. For simplicity, we

only consider square images with uniform block decomposition, i.e.
e Image is of size n x n pixels, and thus d = n?.
e Image is equally divided into b = b number of m x m blocks. Here n = bm.

We now formulate the Bayesian inverse problem. The prior distribution is given

by the TV regularization, i.e. the TV prior

mo(x) oc exp (—p [zl py)

where p > 0 is some fixed parameter that controls the strength of the regularization.
The likelihood function is determined by the model (5.3.1), i.e.

A
7(y|z) o< exp (—5 |y — Ax||§) :

The posterior distribution is then given by

m(x) = 7m(2|y) o< exp (~I(z) — ¢o(¥)),
A ) (5.3.2)
l(z) =3 ly = Azlly,  ¢olz) = pllellpy -

Here we omit the dependence on y as it is fixed in the sampling task.

5.3.2 Posterior smoothing with dimension-free error

Since MLwG requires the gradient of the log density, we propose to approximate

the non-smooth 7 in (5.3.2) by a smooth one 7.. We show that the error between
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7w and m. is uniformly distributed among all the components, leading to a local
dimension-independent error on the marginal distribution of any block ;.

The non-smoothness of 7 originates from the potential ¢q (cf. (5.3.2)). Hence,
we replace o with a smoothed potential . for some small € > 0, such that ¢. — ¢
as ¢ — 0. Various smoothing methods are possible, but it is crucial to ensure that

the introduced error remains small. Here we consider the following approximation

d
pelw) = 1 S\ (D)2 + (DPa)? 4 e (5.3.3)

Thus the smoothed posterior density becomes

d
A v
() o exp (5 ly — Az[l; — > \/(Dg )2)2 + (DM2)? + 5) . (5.3.4)
s=1

As we modify g, which is a function in R? the distance between 7 and 7. in
general depends on the dimension d. For instance, one can show KL(x||7.) = O(de).
However, when examining the marginals of 7 and 7. over small blocks z;, we can
show that the approximation error is dimension-independent with the help of the
marginal transport inequality. We comment that such dimension independence is
crucial for solving the image deblurring problem. It ensures that the smoothing
error is evenly distributed across the image, rather than concentrating on certain
pixels and creating unwanted artifacts in the image.

In light of Theorem 3.3, the key to is to verify that n. is d-localized. We
will mainly use Theorem 3.2, and we introduce some diagonal block dominance

condition imposed on C' = AT A.

Definition 5.2. A matrix C € R% is called c-diagonal block dominant for

some ¢ > 0, if there exists a symmetric matrix M € RP*P st. Vi, j € [b],i # j,

Cjj = Mjjlay, (|Cijlly < Mij, > Myx+c < Mj;.

Remark 5.3. Definition 5.1 introduces a blockwise log-concavity condition similar
to Definition 5.2. The c-diagonal block dominance here can be viewed as an ¢,

version of the blockwise log-concavity condition (which is an ¢5 condition).

Now we state the main theorem.
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Theorem 5.3. Consider the target distribution 7 (5.3.2) and its smooth approxi-

mation 7. (5.3.4). Assume that AT A is c-diagonal block dominant (Definition 5.2).

Suppose ﬁ > ‘2’67";. Then there exists a dimension-independent constant C' s.t.

I’IlE_Lle(?Tj,ﬂ'&j) S Ce. (535)
J

Proofs are delayed to Section 5.4.2.

5.3.3 Dimension-free acceptance rate and convergence rate

In the following, we present two results, which show that the acceptance rate and
convergence rate of MLwG for the smoothed distribution 7. are independent of the
dimension d. Since they are direct application of Theorem 5.1 and Theorem 5.2,

we only state the results here.

Proposition 5.1. Suppose A is bounded in the sense that 3C4 > 0 s.t.
Vi, je[b], |Ail < Ca. (5.3.6)
Then the acceptance rate of the MLwG proposal for m. is bounded below by
Eg;z,j (o™, 2™7)] > 1 — M7/,

Here M is a dimension-independent constant depending only on m,Ca, A\, i, €, and

max; [|[Az"7 — y];]|.

Remark 5.4. Here the lower bound depends on the state of x through the term
max; ||[Az"7 — y];||. However, since the pixels values are bounded in practice, this

term is usually also bounded and dimension-independent.

Proposition 5.2. Suppose A is bounded as in (5.3.6), AT A is c-diagonally block
dominant, and % > 3;67";. Then there exist some p, 79 > 0 that are independent of d

s.t. for all T € (0, 7], we can couple two MLwG chains {x"}2 and {y"}>2, s.t.
1/2 1/2
(Tl -)*) "~ < a=prr (3 [Elld - w4I17)

j€l[b] Jj€lb]

As a corollary, take y™ ~ mw, and we show that x™ converges to m exponentially fast

with dimension independent rate.
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5.3.4 Local and parallel algorithm

Since the convolution operator A has a small radius r, and the difference operator
D® DM are local, the posterior distribution 7. is localized. We denote some

notations to describe the locality structure.
e 7, C |d] denotes the index set of pixels in the i-th block.
e For s,t € [d], denote s ~ t if 0% logm.(x) = 0.

= {t : ds € Z;,t ~ s} denote the index set of all the pixels that are
neighbors of the i-th block.

In the (n, j)-th step of the MLwG algorithm (see Algorithm 2), we introduce the

local negative log-density:

n )\ ni 2
llo’g (a:]|x ’J') 5 Ys — Agjrj — As,fjx_yjj'
SG@j
D(”U) ‘ D(”U) n,5\2 D( ) D(h) 2
+qu ( S,jx3+ s,—jx—j) _l_( x]"’ s,—j —J) + €.

SG@j

Note by definition,
Vi ¢ @j, prﬂ.lw(xj\a: ’].) =0.

loc

Therefore, computing lloC (z;]z" ’J.) does not require x(gpe,. This allows for local

and parallel implementation of MLwG. To be specific, note

V,log m (™) = =V (z "7]93 ’j).

loc

So that one can use the proposal
zi? =2l — VL@ |2 + V2T, Y~ N(0, 1),
which does not involve :L’[ d}\@ Similarly, to compute the acceptance rate, one uses

lna.]

exp(—lia (277 |479))Q; (27, a7 | a” 71)}
exp(— lﬁ)g( j’]’SUE’;))Qj(xj’ja jJ |~7U—}J)
1
47’

And this can also be computed locally.

a(x™, z"7) = min {17

‘ 2
where log Qj(xj ’] | 2" ’?) z ™ 3 + VI (x ’]];L‘ j)H + const.

loc
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The local implementation facilitates updating several blocks in parallel during

the loop over j in Algorithm 2. We define a parallel scheme via the index sets
U Cibl, =1,...,L,

s.t. VI, Vi,5 €U, @iﬂ@j = .

So that blocks in U; can be updated in parallel. The choices {U;};c[z) are not
unique, and one can find parallel scheme with L = 4 for the imaging deblurring

problem. An example of a parallel updating schedule is illustrated in Figure 5.1.

A
Z/[l UQ Z/ll UQ
m X1 X9 X3 X4
U3 Z/{4 U3 Z/[4
X5 X6 X7 X8
n
U Uy U Us
X9 X10 X1 X12
Us Uy Uz Uy
X13 X14 X15 X16
v

Figure 5.1: Block decomposition: example of a parallel scheme with 16 blocks.

For more details on the local and parallel algorithm, we refer to Section 5 in

146].

5.3.5 Numerical examples

We use the Cameraman image as the testing example. Figure 5.2 shows the true
image and the blurred and noised image, which is obtained via the observation model
(5.3.1). Here we take A corresponds to the discretization of a Gaussian blurring
kernel with radius 8 and standard deviation 8. The noise is € ~ N(0,107*- I).

To solve the deblurring problem, we use MLwG to sample from the smoothed
posterior distribution 7. (5.3.4). We first check the effect of different choices of
the smoothing parameter € on the sampling performance. Second, we will verify
numerically the dimension-independent acceptance rate and convergence rate of
MLwG. Finally, we compare MLwG to MALA and show that the local and parallel
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True image with block partition Data

1.0

0.0

.07 256 x 256 [ 512 x 512

64 x 64
.7 128 x 128 C_C1 384 x384

Figure 5.2: Image deblurring problem: Cameraman. Left: Cameraman image and
partition into different sizes (red frames). All sections are again partitioned into
blocks of equal size 64 x 64 (white frames). Right: Data obtained via Gaussian
blur and additive Gaussian noise.

implementation outperforms MALA in increasing dimension in terms of both
sample quality and wall-clock time.

In each experiment, we generate 5 independent chains of 2000 samples each,
and apply thinning by recording every 200-th sample to reduce autocorrelation.
We check our sample chains for convergence by means of the potential scale
reduction factor (PSRF) [48], which compares the within-variance to the in-between
variance of the chains. Empirically, one considers sample chains to be converged
if PSRF< 1.1. We also compute the normalized effective sample size (nESS) and
credible intervals (Cls), see for instance [82] for definitions.

To determine the hyperparameter p in (5.3.2), we use the adaptive total variation
approach in [85], and obtain p = 35.80 for the 512 x 512 image. We use this choice

for all other problem sizes as well.

Influence of ¢ We compute MAP estimates for ¢ € {1073,107°, 107"} with the
majorization-minimization algorithm proposed in [108] and show the results in
the left column of Figure 5.3. We can see that the restoration from ¢ = 1073
has smoother edges than the other two restorations which exhibit the typical
cartoon-like structure of TV-regularized images. Further, the difference between
the results from € = 107 and 10~7 is hardly visible.
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MAP estimate Sample mean 90% CI difference

0.25
0.8

0.20
0.6

0.15
04 0.10
0.2 0.05
0.0 0.00
1.0

0.25
0.8

0.20
0.6

0.15
0.4 0.10
0.2 0.05
0.0 0.00
1.0

0.25
0.8

0.20
0.6

0.15
04 0.10
0.2 0.05
0.0 0.00

Figure 5.3: Image deblurring problem: influence of e. MAP estimate, MLwG
sample mean, and widths of the 90% sample CIs for e € {1073,107°,10}.
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Then we run MLwG for different € with a diminishing step size adaptation
during burn-in [78] targeting an acceptance rate of 0.547 in each block (see [94]).
We show the sample means and widths of the 90% sample CIs in Figure 5.3. Here
the sample means of ¢ = 107 and 10~7 are visually more favorable than their
corresponding MAP estimates. In contrast, the result of e = 10~3 contains visible
artifacts. Moreover, the 90% sample CI difference is in general wider for ¢ = 1073
than for e = 107° and ¢ = 10~7. However, the width of the 90% sample Cls are
rather similar on the edges.

We show some quantitative results in Table 5.1. Here we note that ¢ = 1073
allows for a significantly larger mean step size in comparison to € = 1075 or 10~".

This results in less correlated samples, which is reflected in a larger nESS.

e min nESS [%] 7 [10°% a[%] max PSRF med PSRF

1073 13.3 25.8 54.7 1.01 1.00
1075 3.2 7.5 54.4 1.03 1.00
1077 2.1 5.6 54.3 1.04 1.00

Table 5.1: Image deblurring problem: influence of . Sampling results of MLwG
for ¢ € {1073,107°,10"7}. Here min nESS is the pixel-wise minimum of the mean
nkESS averaged over the 5 chains. The step size 7 and acceptance rate o are
averaged over all blocks and the 5 chains. The maximum and median PSRF are

with respect to the pixels.

We conclude that relatively large values of € make the posterior density smoother,
allowing for larger step sizes and thus making the sampling more efficient in terms of
nESS. However, at the same time, the results can be visually significantly different
compared smaller € that yields sharper edges. Based on these observations, and
since the results for ¢ = 107 and 10~7 are very close, we will fix ¢ = 107° in the

remaining experiments.

Dimension-independent acceptance rate To test the dimension-independent
block acceptance rate, we partition the original 512 x 512 image into 4 sections of
sizes 128 x 128, 256 x 256, 384 x 384 and 512 x 512. Furthermore, each section
is partitioned into blocks of equal size 64 x 64. Thus the number of blocks in the

sections of different sizes are 4, 16, 36, and 64 resp. The 4 deblurring problems are
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shown on the left in Figure 5.2.

We run MLwG with a step size of 7 = 7.44 x 107% on the 4 deblurring problems
with different sizes. The step size is taken from a pilot run on the 512 x 512 problem
by targeting an acceptance rate of 0.547 in each block and then taking the average
of all block step sizes. For all problem sizes, we use a burn-in period of 31, 250
samples. We plot the acceptance rate for each block in Figure 5.4 and see that the

block acceptance rates are indeed dimension-independent.

MLwG block acceptance rates

51.0] 509 5071 509 s508] 508 5071 518
509 | 515 587 | 558| 506 51.8
50.8 | 507 | 51.6] 585 558 507 | 506 | 514
539 | 625 642 541
540 | 534 625| 641| 527 | 516
509 | 538 535 626 641 ] 5271 507 | 51.6 198 % 128
54.8 64.3 256 % 256
51.6 | 548 622 517
543 | 514 | 548| 61.0| 506 | 531 384 x 384
511 | 541 | 516 548 620] 50.8 1 521 | 51.6 512 x 512
59.7 | 64.5
509 | 592 636 555
53.7 | 508 | 592 636 | 546 | 53.6
53.6 | 53.6| 508 592| 63.6] 5461 52.6 | 53.2
517 627 618 623
508 | 512 619 605 605 58.6
565 | 509 | 512 621 ] 60.5] 60.9 ] 58.0 | 57.2
553 537 59.2| 537 | 583 535
526 | 543 | 5361 588 531] 575 5171 532
540 587 5661 591 528 53.7| 567 | 53.7

Figure 5.4: Image deblurring problem: acceptance rate. Block acceptance rates
(%) of MLwG for different problem sizes, listed according to the problem sizes in
the order shown on the right.

Comparison to MALA In this part, we compare the performance of MLwG
with vanilla MALA. For MALA, we use again the diminishing step size adaptation
from [78] during burn-in, where we target an acceptance rate of 0.547. The numbers
of burn-in samples are listed in Table 5.2 and are chosen such that they increase
linearly with the problem size. For MLwG, we use the same setting as in the
previous tests.

We compare the sampling performance of MALA and MLwG in Table 5.2.
In general, MLwG yields much larger nESS than MALA because it allows for a

larger step size. Furthermore, the nESS of MLwG becomes even larger as the
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problem size increases. We attribute this to the diminishing constraining effect
of the boundary condition associated with the convolution operator on the inner
blocks as the dimension increases. In addition, we note that for the given burn-in,
MALA does not converge for the problem sizes 384 x 384 and 512 x 512, since the
corresponding max PSRF> 1.1.

Problem size 128128 256X%x256 384x384 512x512
, MLwG 2.6 2.8 2.9 3.0
min nESS [%]
MALA 1.4 0.8 0.6 0.4
MLwG 7.4 7.4 7.4 7.4
T [1079]
MALA 4.8 2.5 1.8 1.4
MLwG 60.8 o7.7 95.5 54.3
a [%]
MALA 54.0 54.3 54.7 55.0

MLwG  31.250 31.250 31.250 31.250
MALA  125.000 500.000 1125.000  2000.000
MLwG 1.03 1.03 1.03 1.03
MALA 1.06 1.08 1.20 1.20

burn-in [103]

max PSRF

Table 5.2: Comparison of MLwG and MALA for different problem dimensions. The
min nESS is the pixel-wise minimum of the mean nESS taken over the 5 chains.
For MLwG@, the shown step size 7 and acceptance rate « are the means taken over
all blocks and the 5 chains. The maximum PSRF is with respect to the pixels.

Notice that the results from Table 5.2 also validate the dimension-independent
convergence rate in Proposition 5.2 of MLwG. This is because MLwG produces
roughly the same PSRF for all problem sizes with the same burn-in steps. In
contrast, MALA requires significantly more burn-in steps with increasing dimension.

Finally, we compare the wall-clock and CPU time of the sample chains of MLwG
and MALA. All chains are run on the same hardware, Intel® Xeon® E5-2650 v4
processors. Furthermore, we use the optimal number of cores for MLwG@, such that
all blocks with indices ¢ € U; can be updated in parallel (see Section 5.3.4).

We show the computing times in seconds per 1000 samples in Figure 5.5 and
observe that the wall-clock time of MLwG remains almost constant and does not
increase with the problem dimension. This is because the main computational effort
of updating the 64 x 64 blocks on each core remains constant and only more time is
required for handling the increasing number of cores by the main process. For small

problem sizes, the wall-clock time of MLwG is longer than that of MALA, because
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of the overhead of the parallelized implementation and the additional convolutions
of fixed pixels in the local block likelihoods. However, since several updates are run
in parallel in MLwG, its wall-clock time is eventually shorter than that of MALA,
see the time for problem size 512 x 512. Note that the total wall-clock time of
MALA is actually significantly larger, since it requires much more burn-in. The
benefits of MLwG obviously come at the cost of CPU time, which increases linearly

with the number of cores.

Computation times

300 -
—— MAILA wall-clock & CPU
MLwG wall-clock
25091 MLwG cPU

8 200 -
2
9

& 150
g
]

£ 100 -
k|

50 -

O -

1 1 1 1
128 x 128 -- 1 256 x 256 -- 4 384 x 384 -- 9 512 x 512 -- 16

problem size -- number of extra cores for MLwG

Figure 5.5: Image deblurring problem: wall-clock and CPU time of MLwG and
MALA. For MLwG, we show the mean + the standard deviation by means of the
shaded area. The wall-clock and CPU time of MALA are approximately equal and
are therefore not displayed separately. For MLwG, we used the number of cores
indicated in the z-tick labels plus one additional core to handle the main process.

5.4 Proofs

5.4.1 Proof of Theorem 5.2

Proof of Theorem 5.2. Consider the maximal coupling of two MLwG chains ™/
and y™/, where the two chains share the same 5}1"7 and (" in Algorithm 2 for all
n, j. The proof is divided into two parts: (i) derive the coupling inequality for one

MALA step, and (ii) derive the contraction of one cycle.
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Before the proof, we denote the filtration

F™ = span {xo,yo,ff’i, ¢hi =n,Vi < j} :

Accordingly, denote E™/ as the conditional expectation w.r.t. F™J.

I. One MALA step analysis. Denote the proposals for the two chains as

ZT}J _ xﬁ}j, Z;»L’j _ x;}d + ij(xn,j) + A /27.5;17j,
w' =y, wi? =y 4y + V2T
Depending on the acceptance of the proposals, we denote the events
e 1,: both proposals are accepted.
e 1, or 1,: only one proposal (z or y) is accepted.

e 1,: both proposals are rejected.

By definition, we can decompose

B a7
J+HL onyg+l
_Enjcn]”x I ']+ ||
L T (5.4.1)
= By [Benaltal - 127 = w}?l]] + B [Ecuslo) - 123 = 3]
B [BenlL) 1517 = 91+ Bl 137 — ]

From now on, we omit for simplicity the superscript n, j in the notation. For the
case where both proposals are accepted, denote n, = (1 — t)x + ty, t € [0,1], and

we have

zj —w; = xj — y; + 7(v;(z) — v;(y))

y]+TZ/ij ) ( y;)dt

1€[b]

- <1+7/01v vj(ﬁt)dt) —y; +TZ/ V0;(n0) (2 — yi)dt.

1]
Since 7 is blockwise A-log-concave, by definition we have
Vivi(me) 2 =Hjjla,,  |[Vivi(m)ll < —Hi; (Vi 7 j).
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Therefore, if 7 < H j_jl, we obtain that

2 —will < (1= 7Hy;) ll; =yl =7 ) Hijllwi — il

ii ]

(5.4.2)

= |lzj =yl = 7> Hij llwi — il -

i€[b]
For the case where only one proposal is accepted, we have
1z = yill < llzg = yill + 7 llos (@) + V27 [I&1 -
Similarly for ||z; — w;|. So that we have

max {[[z; — yjll, lz; — wj|[} < [|z; — ysll + ™M + V27 [|§]]. (5.4.3)

Therefore, combining (5.4.1) (5.4.2) and (5.4.3), we have

LHS < B¢, [Ec[1a]] - [l — ysll = 7Y Hij llai — il
i€[b]

+ E¢; [E¢[1o] - [lz; — ;]
+ By [(Ec[lx] + E¢[1,]) - [H:L’j — il + 7™ + V27 ng.”H (5.4.4)

= [lzj — y;ll = 7B, [Ec[La]] - > Hyj |l — il
i€[b]
+ Ee, | (BelLa] + Ec[1,)) - [7M+ V27 i) ]

Here we use the fact that 1, + 1, + 1, + 19 = 1. By definition of the acceptance
probability, we have

1 -E¢1] <1—-oaz,2)+1—aly,w).

E¢[1.] + Ec[1y] = |a(z, 2) — aly, w)].
Recall the definition of a; in (5.4.10). By Lemma 5.1, we have
I —a(z,2) +1—ay,w)

1 — exp (min{0, a;(z,£)}) + 1 — exp (min{0, a;(y,£)})
< laj(2, &) + lag(y. )] < 27°2(My + Ma|1&]%).
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lexp (min{0, a;(z,§)}) — exp (min{0, a;(y, £)})]
|aj(z,§) —a;(y, )|

< 7(Ms + My &) Z |2 — yrl|-
keN;

|z, 2) — aly, w)|

IN

So that

1> Eg; [E¢[1o]] > B {1 -7 (My + M2H€j||3)] —1- G2

Ee, [(Bc[Le) + Ec[1,])] < Ee, |7(Ms + Mallg11%) D llzr — uxl
keN;

< Cor Y lan — will.

keN;

Ee, [(Ec[La] + Ec[1,]) - 16]] < Ee, [7(Ms + Ml 161D llow — e
keN;

< Cor Y llow — will.

keN;
Notice H;; > 0 and H;; < 0 if ¢ # j, so that pluging the above inequalities into
(5.4.4), we have

LHS < |lz; — y;l — 7H; (1 - C173/2) I = yill =7 > Hij llzi — wil
ititj

+ (CQTZM + C3T\/§) Z |2k — yrll-

keN;

Therefore, for some C, we proved that

] 7. 1 7' 1 7. 7.
E™ (a7 =y < o~y

| =7 Hyjllai? =y
i€[b]

FC2 Y [l - ).
keN;

(5.4.5)

II. Contraction in one cycle. By definition,
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Similarly for y;lk Denote the error vector e” € RP s.t.
o= ) = .
Taking expectation on (5.4.5), and replacing ||z} — y}'|| by e}, we have

Elej] < Elej ") —7 ) HyE[e}] —7 >  HyEle} ']

i< ii>j
+ Cr3/2 Z Eler] + Cr3/? Z E[ez_l].
keN; k<j keEN; k>j

Denote the matrices H*, HY, G*, GY as
H} = H;l,.;, H=H;l;;, G=Cll;, G =Cllz>; (540)
Then the above inequality can be written in a matrix form
(1+7H" = #2GH) Ele"] < (1 rHY + 726GV ) B[]

Here < is defined in the elementwise sense. When 7 < ||[H" — 71/2G"|| 7!, we have

the Neumann series identity

(—THL + 7'3/2GL) ’ .
0

(I +7H" - 73/2GL)_1 =

e}
k=

Note the right hand side consists only of (entrywise) positive matrices, so that
-1
Ele"] < (1+7H"=72G")  (1-rH" +1"°G") E[e"].
We prove in Lemma 5.2 that there exists p, 79 > 0 s.t. if 7 < 79, we have

<1-—pr

1
H (1+7H" = 72GY)  (1-7H" +7GY) 2

So that viewing E[e"] as a vector, we have
IEfe")l < (1= pr) [[E[" ]| = E["]] < (1 pr)" |[E[]]].

This completes the proof. H
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5.4.2 Proof of Theorem 5.3

Proof of Theorem 5.3. We first prove that m. is d-localized with 6 = /\% Notice
V2logm.(z) = —ANATA — V2. ().

Since AT A is c-diagonal block dominant, there exists a c-diagonal dominant matrix
M € RP*P st ATA(j, j) = Mjj14,. By Lemma 5.3, V2, = 0, and thus

—V2 log me(z) = AMj;1,.
For i # j, note ||ATA(i, j)|| < M;;, and by (5.4.17) in Lemma 5.3,

[V log me(2)|| < M JATAG, 5)|| + || VEje:(2)]|
< My + dmpe 1) + e 21 jyer,

where I' is defined in (5.4.18). Therefore, denote M € RP*® st.
Mij = AMij + dmpe™ P 1ag =1 + pe™ 1 jyer,

and notice Vj € [b], since M is c-diagonal dominant, we have

Mj; = My = A | My; = > My | — (16m +2)pe
iritj iritj
> e — (16m + 2)ue Y2 > Ae/2.

Here we use ﬁ > ?;67”;’. By Theorem 3.2, 7. is %-localized. So that by Theorem 3.3,
2

max Wi (7, 7z ;) < o max E; ||V;logm. — V;logm| . (5.4.7)

J cC 1

By (5.4.19) in Lemma 5.3, we have

Er Hvz logm. — V; 1Og7TH =E, ||Vz'g05 - vz’SOOH

D,
<E Y -
tini s:s~t HszHQ—l—é (548)

< 4m*pmaxE, |1 — | Dzl
’ V| Dsz||” + ¢
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Denote the function I4(t) := E, ll — %] . Then I4(0) = 0 and

| Dyt | Dyz| + ¢
<E

/ —
I(t) = Ex ) 3/2 ™ 9 3/2
(I1Dz]* +12) 2 (I1Dyz]* +12)

S

1 —1/2 1 _
< 38 (1Dl +2) ] < gDl

By Lemma 5.4, there exists a dimension-independent constant C; s.t.
max E, |D,z|| " < C;.
S

This implies that I(t) < Cr/2 = I4(t) < Crt/2. So that

D, 1
maxE, |1 — | Dy < EC’Wsl/Q.
) VIIDsz|* +
Combine (5.4.7) (5.4.8) and (5.4.9), we have
mjale(Wj,ﬂm) < - -AmTp - 56}5 < §C’7rm5.

Here we use % > 3:37";. This completes the proof.

5.4.3 Lemmas

Lemma 5.1. Denote the function a; : R? x R% — R, s.t.

m(2)Q;(%), x5 | v)
m(2)Q;(%5, 25 | )

a; (:U7 g) = log

(5.4.9)

(5.4.10)

where zj = x; + Tvj(x) +V27€ and z_; = x_;. Under the assumptions in Theo-
rem 5.1, it holds that for 0 < 7 <1, there exists M; (i = 1,2,3,4) depending only

on M,H,L and s, s.t.
jaj(x, €)] < 72(My + My [I€]1%).

IVaa; (2, &) < 7(Mz + My [[€]]%).
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Moreover, Yk ¢ N, Vy.a;(x,&) =0. As a result, we have

jaj(2,€) — a;(y, )| < T(Mz + My [E11°) D llaw — urll - (5.4.13)
keN;

Proof. By definition of a; and note z; — z; = Tv;(x) + V27¢,
1 2 2
a5(2,6) = logw(2) —log(z) ~ - [Ila; — 25— Ty I ~ 15 — 25 — 7,0

— tog(2) logn(a) — 27 (1y(2) + (@), — L y(2) + @)

Note z — 2 = (0,...,0,2; — x;,0,...,0). By Taylor expansion, we have
log7(z) — log 7(x)
1 1
= v(z) (2 — 2) + §Vv(x) (2 — )%+ 6V2v(n1) (2 —a)®
1 1
= vj(@) " (25 = 25) + 5 V05(2) 1 (55— 1) + S Vi050m) : (25 — @)%

6
= \/Zvj(:c)Tﬁ + T H'v](:c)H2 + T{ijvj(x)f + (’)(7'3/2).

Similarly, we have
1
vj(2) = vj(®) + V,ui(@) (25 — 25) + 5 Vi0i0m) « (2 — 7)™
= v;(x) + V27V u;(x)E + O(T).

Therefore,

(vj(z) +v(x), &) = \/Zvj(x)Tf + Tgijvj(x)g -+ (’)(7'3/2).

“[§
\]

T oy2) + v @I = 7 oy @) + 0.

Combine these equations, and notice O(y/7) and O(7) terms cancel out, we obtain
a(z,€) = O(T3/?).
And this term only depends on

vj(‘r)@gv £®37 Vjvj(x)7 v?jvj(nl)av?jvj(n2)'
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Therefore, one can show that
la(z, &) < 782 (My + My [I€]1%).

This proves (5.4.11). For (5.4.12), notice V,z = I + 7Vv;(x), and thus

v:caj(x7£>
= (I+TV%( z))v(z) —v(z) - g (I +7Vv;(2)) Vo(2) + V()] €

[+ TWJ( ) Vuj(2) + V()] (vj(2) + v;(2))

"3
) = vl@) — 5 (Vos(e) + Vo)) (7oy(e) + V7

= v(z
+ 7Vv;(z)v(z) — gTVUj (x)Vv;(2)€

= 5 (1 +7V0;(2)) Vy(2) 4 V(@) 5(2) = 5 V(@) Vo (2o (o).
Denote y; = (1 — t)xz + tz and g(t) = v(y;), and we have
g'(t) = (Vo(y)" (= — 2) = Voy(y) (2 — )

Recall z; — x; = Tv;(x) + V27¢,

o(2) = 0(a) — 5 (Voy(2) + Vo (e) (7o(e) + VTE)
1

=9(1) = 9(0) = 5 (¢'(1) +4'(0)).
Therefore,
v(z) —v(z) — % (Vo (2) + Vu;(x)) (TUJ'(I) + \/ZQ H
T B . 1 / /
= o [ |91 = g(0) = 5 6') +9 )
i wT " max i
= sup i g [eng" (O] < max 75 lg" ()]
— 15 max [V (V50)00) 5 (35 = 2)) < 35— s
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Here we use a classical numerical analysis result:

1

1<f(>+f(>)‘ E——a

|f(1> - f0) - 2 12 t€(0.1]

Finally, we have

IV2a;(2.0)ll < 15 Hrvj +VQT§H 7 [HM -+ 712H2 ¢+ HM + 7H2M]
L
< = 2 2 2
< (T M2 4 27 ||¢]| )+T[2HM+2H (1+T||§|| ) +7H M]

This proves (5.4.12). For the last claim, notice for k ¢ N,
Viv;(z) = Vi logm(z) = 0.

Therefore, V,, 2 = V,, x, and we have

1
Varai(0€) = () — wnla) = [ Vjunlun) (s — 25)dt = 0.
0
Finally, since a;(-,&) is only a function of z;, we have

laj(2,€) — a;(y. )] < [ Vaa; (. O [Jan; — un; |
< 7(Ms + My €)% S [l — wl
keN;

This completes the proof. O

Lemma 5.2. Under the assumptions in Theorem 5.2, there exists p, 79 > 0 s.t. if

T < 19, we have

<1-—pr

-1
H (I +7H" — 7'3/2GL) (I —7HY + 73/2GU) 2

where H*, HY, G, GV are defined in (5.4.6). Here p, Ty are independent of d.

Proof. Denote G = G + GV. By definition, Vv € R,

1Gol|” = Z (c > Uz> <CY (1+s) Y P <C+5) vl

Z ZNJ ] ZZN]

So that |G|, < C(1 +s). Similarly, one can prove that |G|z, |GVl < C(1 +5s).
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With out loss of generality, we can take H;; = 0 if ¢ o j. Similarly we have

s { | H,, ||

o [V} < mac | iyl (1+5).

When 7 < 4[| H' — 712G"| ™! it holds that || (1 -+ 7H" - 792G")”'|| <2, and

1
< H (1+7H" - 71G") H |1 = (14 rH" = 26" (1= rH" + 26" |

H (1+7H" - 73/2GL)_1 ~ (1= rH"+ G")

2
<2 | <7'HL — 7'3/2GL)

<272 [ | + 2 6] .
So that

H (1+7H" - 73/2GL)1 (1-7H"+ 76"

2
gL 3/2AL 17U | 3/2U
< H(I FH" 47 G)(I - G>H2
2
27 ||HY | + | GH|| |1 - rHY + 26|
< |r-rH 26|+ ||(-rH" 4 PRGN (<rHY 4 PR6Y) |
vor [ H 4+ 2 |G [o o O]+ 726V

< 1= H]y + 7 |Gl + O().
Note here |G|, and O(7?) are dimension independent. So that by taking
r < SHE PG 1 < [HIT PP G, +O) < prdm, (5.4.14)
We obtain that

H (I +TH" - 7'3/2GL)_1 (I —THY + 73/2GU> <1- %T)\H.

2

Note the requirements on 7 are independent of d. So that one can find some 7y > 0
independent of d s.t. (5.4.14) holds if 7 < 75. And we can take p = J\g. O
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Lemma 5.3. The derivatives of (5.3.3) are given by

d (v) (vV\T (h) (h)\T
(Ds z)(Ds )" + (Ds " z)(Ds )
Voe(r) =p) . " o (5.4.15)
s=1 ((DS 7)2+ (Ds"x)? —|—5>
V2. ()
d 3/2
= 1Y (D) + (D)2 +e) E (<D§”>>TD§”> + (D) DP) (5.4.16)
s=1
+ (00D — (D)D) (D)l — (D)D) |
The following results hold: VQQOE(ZC) = 0 and for i # 7,
V3 1og @z (@) || < dmpe™1i0; + pe™ 1 jrer (5.4.17)

Here I' denotes the pairs of blocks in ‘antidiagonal’ position, i.e.
where (x;,y;) denotes the x,y indices of block i. The gradient estimate holds:

| Ds]l

vt e [d], |Oipe(x) = upo(z)| <p Y |1- : (5.4.19)
s | yfIDal + e
where we denote
D,z = (DWW, DWaNT € R, (5.4.20)

Proof. (5.4.15) and (5.4.16) are obtained by direct computation. VZp.(z) = 0
directly follows from (5.4.16). For (5.4.17), first consider dg(i,j) = 1. If 4,7

are vertical neighbors, only those s located in the boundary of the upper block
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contribute to Vmgog Therefore,

V3= ()]
<u Y (Do) 10110

s in boundary

+ (10Dl 1D+ 1Pl DS ) (1D lIDE + (DMl D)) |

<u Y (Ipaf+e) -[2s+2(|D§”>x|+|D§h>x|)2]

s in boundary

—3/2
<u Y (IDalf+2) - (20 + 4| D)

s in boundary

< u Z 4712 = 4m,u5_1/2.

s in boundary

For (i,j) € T, there is exactly one s that contributes to V,¢.(x), and the only

non-zero term is the cross term of the vertical and horizontal differences. So that

9 —3/2 )
IV3ee@p < o (1Dl +) Dzl DWa]| DL | D)

321
2 2 —
<u (||D53:|| —H—:) 5 D, z||” -2 < pe™ V2.

This proves (5.4.17). For (5.4.19), simply note that

~1/2 -
= w3 |00 + (D)D) | (1D 4 2) ™ = D

s:8~1t
2 —1/2 -1
<1 S 1Dl | (1Dl +) - D]
s:8~t
| Ds ||
=p) 1= —
s~ VI Dsz||” + ¢
This completes the proof. H

Lemma 5.4. There exists a dimension-independent constant C s.t.

max By |Dyz|;" < C;.

101



Proof. Fix any s € [d]. For simplicity, denote 2 2 g,

and zs_ = 2, € R?¥2 for the other coordinates. Accordingly, m(z) is transformed
into another distribution 7(z) = m(T~12) (note det(T) = 1). Also note that 71

admits an explicit form, i.e.

2 =2 vz, alV =2 vz, a =2

for convenience. Consider the factorization

Denote 2z, = (zﬁ”), zgh))

T(2) = 7(2st; 25-) = Tl2s4 ]2 )7 (25-),

where 7(zs_) denotes the marginal of 7 on zs_. Notice

d
log 7t (zsy |25 ) = —% |y — AT—lzuz — “Z |D(T"2)||, — log #(2,—) + const.
s=1

Fix z,_ for the moment. Notice 4 ||y AT~ z||2 is L-smooth for some dimension-
independent L > 0, since only a dimension-independent number of coordinates of

AT~z depend on zs_. Therefore, fix any 20, , so that

@

A
= AT ez ) = 5 = AT Rz ) = e = )

h

< 5l =22

where 00 is the gradient w.r.t. z. of % ||y — AT‘lez at zg+. Notice also

MZHD Hzors 2o H2</~LZHD (zosr 2Dl + 81 [lzor = 20,

(v) (h)

since changing zs’ or zs; ' affects 4 finite difference terms in the summation.

Combining the above controls, when z, € By (22, ) := {zsy : |25+ — S+H2 <1}, it
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holds that

log (2s1|2s—) — 10g7~T(22+|ZS_) +’- (25 — 22—&-)

L L
o) EFEEN e

Therefore,
T(zsq | 25— )dzss

> / exp (log T(zs|2s—)) dzsy
B

1(Zg+)

3

L
> 7(22, |25-) exp (—5 — 8,u) / exp (—0” - (254 — 20,)) dzss
Bi(z

where we use the Jensen’s inequality and the symmetry of B;(z!_). Therefore,

. _ L
(294 ]2-) < |Bi| ' exp (5 +8M> :

This holds for arbitrary 2z, so that the marginal distribution of 7(z,4) satisfies

L
T(251) = /ﬁ(zs+|zs>ﬁ-(zs)dzs < |Bl|_1 exXp <§ + 8#) = C".

Note C" is dimension-independent. Finally, notice

EINW HDS.CL'Hil — 7T(ZS"!‘)dz(’u)dz(h)
2 s s
R [|Zs+[l5

/
<1 +/ ¢ dzWdz M
[

N Zst |2 <1 [Zstlly ’

2 1 !
= 1+/ / g-7“d7“d9
0 o T

=1+2nC" = C,.

Thus, C} is dimension-independent. This completes the proof. H
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Chapter 6

Localized Diffusion Models

Diffusion models are the state-of-the-art tools for various generative tasks. However,
estimating high-dimensional score functions makes them potentially suffer from the
curse of dimensionality (CoD). In this chapter, we consider exploiting the locality
structure to circumvent the CoD in diffusion models. Under locality structure,
the score function is effectively low-dimensional, so that it can be estimated by
a localized neural network with significantly reduced sample complexity. This
motivates the localized diffusion model, where a localized score matching loss is
used to train the score function within a localized hypothesis space. We prove
that such localization enables diffusion models to circumvent CoD, at the price
of additional localization error. Under realistic sample size scaling, we show both
theoretically and numerically that a moderate localization radius can balance the
statistical and localization error, leading to a better overall performance. The
localized structure also facilitates parallel training of diffusion models, making it

potentially more efficient for large-scale applications.

6.1 Localized diffusion models

6.1.1 Review on diffusion models

Diffusion models operate by simulating a process that gradually transforms a simple
initial distribution, often Gaussian noise, into a complex target distribution, which
represents the data of interest. The core formulation involves two processes: a
forward Ornstein—Uhlenbeck (OU) diffusion process which evolves data samples
from the data distribution my to noisy samples drawn from a Gaussian distribution,

and a reverse diffusion process that learns to progressively denoise the samples and
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effectively reconstruct the original data distribution.
Consider a forward OU process (X¢)ejo,7] that is initialized with the target

distribution m, i.e.,
dX; = —X,dt +V2dW,, X, ~ 7. (6.1.1)

Denote its reverse process as (Y;)co,7] 8-t- ¥; = X7 Under mild conditions, Y}
follows the reverse SDE [102]

dY; = (V; + 2V log mr_¢(YVy)) dt +V2dWy, Yy ~ mr, (6.1.2)

where we denote m; = Law(X;). The target distribution my can then be sampled
by first sampling Yy ~ 7y and then evolving Y; according to (6.1.2) to obtain a
sample Y7 ~ .

To implement the above scheme, several approximations are needed:

1. Score estimation. The score function s(z,t) := Vlog m(x) is not accessible,
and needs to be estimated from the data via the denoising score matching
scheme [114, 101, 61]

§ = argmin £L(sg),
50

T
£060)i= [ Bapesy [Bareratoton [I5001,8) = Vo log mp(arlz)] ] .
" (6.1.3)
In the sampling process, the true score Vlog mpr_4(Y;) in (6.1.2) is approxi-
mated by the estimated score s(Y;, T — t).

2. Approximation of mp. The initial distribution 77 in the reverse process is
intractable. But since the OU process converges exponentially to mo, = N(0, ),

we can approximate mp by N(0, I) in (6.1.2), i.e., Yy is drawn from N(O, I).

3. Early stopping. The reverse process is usually stopped at t =T — t for some
small £ > 0 to avoid potential blow up of the score function s; as ¢ — 0. The
early stopped samples satisfy Y7_; ~ m;, which should be close to mp when ¢

is small.

4. Time discretization. The Euler-Maruyama scheme is used to discretize (6.1.2).

Pick time steps 0 =ty <t < --- <ty =T —t,and evolven =0,1,... , N —1
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by
Y;fn+1 = }/%n + (Y;n + 2/5\(}/;5717 T— tn)) Atn + V 2Atn§n’ (614>

where At, = t,41 — t, and &, ~ N(0,7). Design of the time steps (the

schedule) is crucial for the empirical performance of the sampling process.
Note the OU process admits an explicit transition kernel

Tyjo(w¢|w0) = N(xs; aprg, 021), ap:=et, o,:=+/1—e 2, (6.1.5)

So that V,, log my0(z¢|z0) = —0; *(2¢ — cauy), and myp(z¢|zo) can be realized as
Tt = Q4T + Op€e, €4~ N(O, ])

Therefore, the denoising score matching loss in (6.1.3) can be written as

T
_ 2
L(50) :/ EoyonoEey oo [Hse(at:co +over,t) + o7 el } dt, (6.1.6)
t

where we involve the early stopping truncation. The above loss provides a convenient

form for implementation [61].

6.1.2 Locality structure in diffusion models

We show in this section that the locality structure is preserved in the forward OU
process, which lays the foundation for the localized score matching in diffusion
models.
The explicit transition kernel (6.1.5) of the OU process implies that 7; has an
explicit density
() = /N(xt;atxo,aff)ﬂo(:po)dazo.

7 can be viewed as an interpolation between 7y and 7o, = N(0, I). Suppose m is a
localized distribution on an undirected graph G. It is obvious that 7., is localized,
but their interpolation 7; may not remain strictly localized. However, m; is still

approximately localized, as proved in the following theorem.

Theorem 6.1. Suppose my has dependency graph G and is log-concave and smooth,
ie. 0 <m <M < oo s.t. ml 2 —V?logn(x) X MI. Then for anyt € (0,T], m
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15 approzimately localized on G. Specifically,

. mo? + a2 dg(4,5)
V21 < ¢ ] -t "t . 6.1.7
IVt < ot (1 o o 1.

Here ay = e and oy = /1 —e=2t (¢f. (6.1.5)).

Remark 6.1. (1) While Theorem 6.1 assumes log-concavity to apply Theorem 3.5,
the exponential decay of correlations is ubiquitous for distributions with locality
structure [68, 92, 33] and does not inherently depend on log-concavity. The
assumption is adopted here for simplicity and to derive an explicit bound.

(2) Here we assume that 7 is localized for technical convenience. In practice,
many distributions of interest, such as image distributions, are typically only
approximately localized. We believe that our results can be extended to this setting.

Due to the additional technical challenges, we leave this extension to future work.

The proof is based on the observation that
V?j log Ft(xt) = at20-t_4covﬂ'o\t(mo|wt) (33072-, $07j) .

So that the result directly follows Theorem 3.5. Detailed proofs are delayed to
Section 6.4.1.

6.1.3 Localized hypothesis space

To exploit the locality structure in diffusion models, we introduce the localized

hypothesis space for the score function,
A = {39 LRI 5 R sg i (z, t) = ug,j (TN, t),upj € %, j € [b]} . (6.1.8)

where r denotes the localization radius, /\f;’ is the extended neighborhood (2.1.2),
and %; is certain hypothesis space for the j-th component of the score function to
be specified later. Note here we use sg ;(-,t) to approximate the score function of
7y in light of Theorem 6.1.

Define the effective dimension of sy as

dep = maxd;,, dj, = Z d;. (6.1.9)
J iENT

Since sy(-,¢) can be viewed as a collection of functions {ug;(-,t) : R% — R%} ),
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it is essentially a function of d.g variables. For local graph, deg < d, so that

intuitively estimating sy in 77, does not suffer from the CoD.

ReLU neural network In practice, 7. can be realized by a neural network
(NN) with locality constraints. Here we consider the widely used ReLU NN class.
We note that our method and analysis result apply to other types of NNs as well.

Following [84], we introduce the hyperparameters of a sparse NN as follows:
e L € Z, denotes the depth of the NN.
e W= (wp,...,w.) € RH! denotes the width vector of the NN.
e S, B denote the sparsity and boundedness of the parameters.
Consider the ReLU NN class with hyperparameters (L, W, S, B):
NN(L,W,S,B) = {ug : R" - R"™ | § € ©(L,W,S,B)},
O(L,W,S,B) = {6 = {W;, b}y | W € RM™1 by e R™, [|0]|, < S, [|0]l,, < B},

ug(x) = Wio(Wi_yo(---o(Whiz+b1)--+) +b_1) + b,
(6.1.10)

where o(z) = max{0, z} is the ReLU activation function (operated element-wise
for a vector) and ||6||,, ||0]|,, are the vector ¢y and £, norms of the parameter 6.

One can choose the hypothesis space %; as consisting of such ReLU NNs:
U =N(L/, W/ ST BY), where w))=d;, +1, w| =dj. (6.1.11)

Here the hyperparameters L7, W7, S/, B/ are to be determined later.

6.1.4 Localized denoising score matching

Given the hypothesis space 7. (6.1.8) with localized NN score %; (6.1.11), we
can learn the localized score function by minimizing the denoising score matching
loss (6.1.6). Given i.i.d. sample {X@}N from m, the population loss (6.1.6) is

approximated by the empirical loss, i.e.,

§ = argmin Ly (sg), (6.1.12)
SgE I
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with

A~

N T
1 .
Ln(s9) = N E / Ee,~N(0,1) lHSQ(Oti(l) + o€, t) + at_let
i=1 7t

2} dt.  (6.1.13)

~

Notice Ly is decomposable: Ly (sg) = 30 L; n(ug,;), where

J=1

~

1< /7 (i) 1 2
Einles) = > | Eawnon HUGJ(%X/\@ +oeny,t) + o, emH dt.
i=1 /L

(6.1.14)

The optimal u; then solves

u; = arg min Eij(UQ’j). (6.1.15)

ug,j €%
This allows for parallel training of the localized NNs, i.e., the components of the
score function can be trained independently. Note the score function need not be a

gradient field, which introduces great flexibility in designing hypothesis space.

Remark 6.2. For general distributions, the components of the score function are
correlated, so that {sg;()}>_; should be trained simultaneously. However, for ap-
proximately localized distributions, most components of sy are almost uncorrelated,

which facilitates parallel training.

6.2 Analysis of localized diffusion models

6.2.1 Error decomposition

We do not consider time discretization here for simplicity. The sampling process is

A~

4%, = (Y, +25(V, T — 1)) dt + V2aW;, ¥y ~N(0,1). (6.2.1)

And we take the early stopped distribution fip_; = Law(?T_z) as the approximation
of my. It suffices to consider the error between fip_; and 7, as it is easier to control
the early stopping error, i.e., the distance between m; and my. The following error

decomposition is standard [22].
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Proposition 6.1. Under Novikov’s condition [22]:

1 [Tt
exp (5/ I5(Y;, T —t) — s(Y;, T — t)2dt>] < o0,
0

where Q = Law (Y[ r_y) denotes the path measure of the reverse process (6.1.2). It
holds that

Eq

T
KL(my|fir—t) < e 2 KL(mIN(0, 1)) + / Epor, |[5(20,t) = s, 0)]1°] dt. (6.2:2)

Proofs are delayed to Section 6.4.2. We note that the first term on the right hand
side can be replaced by e 2T=YKL(m;|IN(0, 1)) when 7y is singular w.r.t. N(0, I),
so that it always decays exponentially in T" regardless of my. Thus it suffices to

control the second term; i.e. the score approximation error.

6.2.2 Localized score function

As discussed in Section 6.1.2, strict locality is not preserved in the forward OU
process, so that in general, the true score s ¢ 7. It is therefore crucial to control
the approximation error of the best possible approximation s* € 2.

Consider taking %; = C?(R%+*1) in the localized hypothesis space 7% (6.1.8),
so that the only constraint in % is the locality structural constraint (note we
always consider at least twice differentiable functions). Then the best possible
approximation error can be identified as the localization error of the score function.
To avoid confusion, we denote " as the hypothesis space when we take %; =
C?(R%r+1),

Motivated by (6.2.2), we consider the optimal approximation in the L?(m;) sense,

le.,

T
s* :argmin/ /||39(x,t) — s(x, ) ||” m(z)dadt
t

sgEIE
& Vielb], sj(xt)=uj(znr,t),

where u} —argmm/ /||U9,] Ty, t) — si(a, t)||2m, (z)dadt.

Uug ]GW

Using the property of conditional expectation, it is straightforward to show that
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the optimizer is
wj(@nr,t) = By, [Sj(x',t) JT.//\/;« = :L’er}

1
= — [ V.1 T LN v T_pr )dx_prr.
mw)/ slogm(any, -np)me(tay, 2-n7)de—y;

(6.2.3)

Here we denote —N7 := [b] \ N].
Due to the approximate locality (Theorem 6.1), one can expect that the ap-
proximation error decays exponentially with the radius r. Precisely, we prove the

following theorem.

Theorem 6.2. Let my satisfy the conditions in Theorem 6.1, and its depen-
dency graph is (s,v)-local. Consider the hypothesis space ¢ (6.1.8) with U%; =

C%(R%+*Y). Then there exists an optimal approzimation s* € S such that
T
5%z, ) — s;(z, 0|25, dt < Cdj(r + 1)e=<C+D) (6.2.4)
t si(z, 85, )| 2y A < Cj(r e , 2.
where C' and ¢ are some dimensional independent constants depending on m, M s, v:
C =2smax{l,m }x* 1 logr, c=—2log(l—r"").

Note (6.2.4) is independent of t,T. Moreover, for any sy € F€*, the Pythagorean
equality holds

0.z, 2) = 852, )22y = 1305, 1) = s )2 I35 ) = 50 -
(6.2.5)

The proof can be found in Section 6.4.3. (6.2.4) provides an upper bound for
the hypothesis error of using a localized score function to approximate the true
score function. Note although the true score s;(x,t) is a d-dimensional function,
the bound is independent of the ambient dimension d. Secondly, the bound decays
exponentially (up to a polynomial factor) w.r.t. the radius r, so that a small r is
sufficient to achieve a good approximation. Finally, note taking summation over

j € [b] in (6.2.4) gives the total approximation error

T
2 v, —c(r
| lso(e.t) = 0y d < Calr 176700,
which scales linearly with the dimension d.
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6.2.3 Sample complexity

In this section, we demonstrate the key advantage of the localized diffusion models,
i.e., that the sample complexity is independent of the ambient dimension d. We
will show that the denoising score matching with the localized hypothesis space .77,
is equivalent to fitting the L?-optimal localized score in (6.2.3). Since the localized

scores are low-dimensional functions, the sample complexity should be independent

of d.

Equivalent to diffusion models for marginals A key observation is that the
localized denoising score matching loss (6.1.14) is equivalent to the j-th component
loss of the score function when we use standard diffusion model to approximate

the marginal distribution my(x er). To be precise, denote its population version as

2
Jat

T
-1
L;j(ugj) = Ewowﬂo/ Ee,~N(o,1) U‘U&j(o‘tm&/\/} +owenr,t) + 0y e
t

(6.2.6)
The following proposition shows the equivalence.
Proposition 6.2. The follounng equalities hold:
L;(uo,)
T 2
= EIONJNWO/ Ee,~n(0.1) |:”u9,j(04t$0,/\/]?’ + TELNT t) + Ut_lﬁt,j ] dt
t
T 2
- EIO,N}NWO [ EIt,N;NWﬂO(zt,N;'IO,N}) |:Hu9,](xt,/\/’;7 t) - v] 10g 7Tt\0(£t,/\/’;|x0,j\/j7") :| dt

T 2
— /t Ert,N;Wt {Hueyj(xtyj\/jr, t) — u;(a:tyj\/jr,t) ] dt + const.

Here uj is the optimal localized approzimation of the score function (6.2.3), and

the constant depends only on .

The proof can be found in Section 6.4.4. Proposition 6.2 implies that the localized
score matching can be regarded as b diffusion models, each of which aims to fit (one
component of) the score function of a low-dimensional marginal distribution. Using
the minimax results of diffusion models, e.g. [84], one immediately obtains that
the sample complexity of the localized score matching is essentially independent of

the ambient dimension d.
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A complete error analysis We provide a concrete result below. Following [84],

we assume a further boundedness constraint on the hypothesis space 7. (6.1.8):

log® N
= {se st | vie bl Istol s 2N (62.7)

O¢

The constraint is natural as the score function scales with o, '; see [84] for more
discussions. We also assume the following technical regularity conditions on the

target distribution.
Assumption 6.1. The target distribution 7 satisfies the following conditions:

1. (Boundedness) mq is supported on [—M, M ]d, and its density is upper and lower

bounded by some constants Cy, C-! respectively.

2. (v-smoothness) For any j € [b], its marginal density
mo(ar) € Br(By,([-M, M]%7)).

Here B, , denotes the Besov space with 0 < a,b < 0o and v > (1/a — 1/2),
and Bpr denotes the ball of radius R in the Besov space.

3. (Boundary smoothness) mo(znr)lo € Bi(C*()), where Q = [, M|\
[—M + ag, M — ag]% is the boundary region for some sufficiently small width
ag > 0. Given sample size N, one can take ag ~ N _é, where dqg is the effective
dimension (6.1.9).

Remark 6.3. [84] only considers the standard domain [—1, 1]¢. It can be simply
extended to [—M, M]? by scaling argument. Denote 7 := Memy(M-), then 7V is
supported on [—1,1]? and satisfies the same regularity conditions. Note the scaling
only affects the radius R of the Besov space, and does not change the scaling of

the sample complexity.

See [84] for more discussions on the regularity conditions. The following theorem
provides an overall error analysis by combining Proposition 6.1, Theorem 6.2 and
Theorem 4.3 in [84]. We comment that [119] points out a flaw in the proof in [84],
but the issue is fixed in [119].

Theorem 6.3. Let mg satisfy Assumption 6.1 and the conditions in Theorem 6.2.
Given sample size N, let 6N be the bounded hypothesis space (6.2.7) with %U; =
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NN(L/, W7, S B7) (6.1.11). Denote n; = N~—9%/2v+d)) - qnd choose the hyperparame-

ters as

L7 = O(log" ny), [|WI[|, = O(n;log®ny), S = O(n;log*ny), BI = nf 8™,

choose t = O(N7F) for some k > 0 and T < log N. Let 5 be the minimizer of
the empirical loss (6.1.13) in SN . Denote Jir_; as the sampled distribution using
learned score s. Then it holds that

Eqxaopy, [KL(mellir-p)] < e " KL(mo[IN(0, 1))

. (6.2.8)
+ Cd(r 4+ 1)Ye ) 4 O'b N~ 7%+ log'® N,

Here dog is the effective dimension (6.1.9), C,c are dimensional independent con-

stants in Theorem 6.2, and C' is a dimensional independent constant.

The proof can be found in Section 6.4.5. There are three sources of error in
(6.2.8):

(1) Approximation error of 7w, which decays exponentially in terminal time 7T’;

(2) Localization error of the score function, which decays exponentially in localiza-

tion radius r;

2y
deﬂ+27 ’

(3) Statistical error, which decays polynomially in N, with statistical rate

Remark 6.4. (1) Compared to the vanilla method, the localized diffusion models

achieve a much faster statistical rate dejl% > dzw and thus potentially mitigate
the curse of dimensionality.

(2) (6.2.8) indicates a trade off in the choice of localization radius . A smaller r
leads to smaller statistical error but induces larger localization error. Note deg < r”
(see Definition 2.1), so that the optimal choice is r* = O((log N)%H) When
log N < dVTH, one can show that the overall error is greatly reduced compared to

the usual statistical error:

2~ 9
* — e
e—cr + N d;ff+2a, << N dt2v

This is usually the case in high-dimensional problems, as one cannot obtain a large
sample size N exponentially in d.
(3) We compare the sampled distribution to the early-stopped distribution 7; by

convention. In fact, the early-stopping error can be controlled straightforwardly in
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Wasserstein distance. For instance, by Lemma 3 in [22], it holds that W3 (g, m;) < dt.

So that the overall error

Exoyy W3 (mo, fir—)] S Wa(mo, m) + By W3 (e, fir—t)]
S ANTF + By [KL(mlliir—)).

Here the second inequality uses Talagand’s inequality. The early-stopping error

does not deteriorate the order of convergence if one take k > %

6.3 Numerical experiments

6.3.1 Gaussian model

In this section, we verify the quantitative results obtained before using Gaussian
models. First, we use randomly generated Gaussian distributions to show that the
locality is approximately preserved in OU process. Second, we consider sampling a
discretized OU process, and show that a suitable localization radius is important

to balance the localization and statistical error.

Approximate locality

Consider localized Gaussian distribution
7o = N(0, Cp),
where the precision matrix P := Cj' is a banded matrix s.t.
Po(i,j) =0, Vl|i—j|>ro.

We will generate random localized precision matrices Py with different dimensions
and bandwidths, by taking Py = LLT, where L is a randomly generated banded
lower triangular matrix. As the condition number plays an important role in the
locality, we will also record the condition number of the precision matrices.

We consider diffusion models to sample the distribution. The score function

admits an explicit form s(z,t) = Vlogm(z) = — Pz, where

P = —V?logm = (a?Cy+ ofI) L.
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We will focus on P;, as the locality of the score function s(-,t) is equivalent to the

locality of the precision matrix P; for Gaussians.

log |Cov(p;)|, t = 0.1039

400

600

800

200 400 600 800

Figure 6.1: Locality in diffusion models. The precision matrix P, at ¢ = 0.1039,
plotted in log |P;| scale. We can see precise exponential decay of P;(i,7) in |i — j|.

First, we show in the top-left plot in Figure 6.1 that the |P;(7, )| is indeed
exponentially decaying with |i — j|. Here we take a snapshot of the precision matrix
at t = 0.1039, which is the time with maximal effective localization radius (see
middle plot in Figure 6.2). We note that the precise exponential decay is not chosen
artificially, and any snapshot will yield similar results.

We then compute the effective localization radius of P;, which is defined as the
largest r such that the average of the r-th off-diagonal elements is larger than a

threshold. More precisely,

1 1
Tloc(t) 1= max{l <r<d: T Z |P(i,i+71)| > €- Etr(Pt)}. (6.3.1)

O 1<i<d—r
We take the threshold rate e = 0.001. We plot the function 71,.(¢) for different
dimensions d, bandwidths ry and condition numbers x in Figure 6.2.
From Figure 6.2, we can see that the effective localization radius 7.(t) first
increases with ¢, and then decreases to 1 when ¢ is large. This is due to the fact
that P, can be regarded as an interpolation between Fy and P, = I. Note this

is consistent with the theoretical prediction in Theorem 6.1, where the bound
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Figure 6.2: Localized diffusion model: effective localization radius rie.(t) (6.3.1)
under different problem dimension d, precision matrix bandwidth ry and condition
number k. Left: ri.(t) with different dimensions. Here 7y = 10 and the condition
numbers are similar (x ~ 193,191,197). Middle: rj,.(t) with different bandwidths.
Here d = 1,000 and condition numbers k ~ 163,146, 132. Right: 7,.(t) with
different condition numbers. Here d = 1,000 and ry = 10.
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of ||Vl2j log m¢|| first increases with ¢ and then decreases to 0. Next, we can see
that the effective localization radius rj,.(t) is almost independent of the dimension
d, consistent with our motivation that the locality structure is approximately
preserved with dimension independent radius. We can also see that the effective
localization radius ri.c() is almost linear in the bandwidth ry, and increases with

the condition number k.

Balance of localization error and statistical error

Consider a discretized OU process X € R? (d = 101), where X,, follows the
dynamics
X1 ~N(0,1), Xpp1=anXy+0n&n, & ~ N(0,1),

where a, = e, 02 = 1—a2 (h =0.2), and X1, ..., &00 are independent. Notice
X follows a Gaussian distribution

d—1
mo(z) = N(z1;0,1) H N(2pi1; nn, 03 ). (6.3.2)

n=1
Consider using diffusion model to sample the above distribution. Since the marginals
of the forward process are all Gaussians, the score function is a linear function in z.
Civen data sample { X} | we estimate the score of the linear form 5(t, z) = — P

by the loss (6.1.6), which admits an explicit solution
P = (a?Cy+a?D)7", (6.3.3)

where Cj is the empirical covariance of {X®1},_;. The non-localized backward

process is

Vi =Y, + Aty (I - 213T_tn) Vi, + V208,86, (6.3.4)

Here P, is the estimated optimal precision matrix (6.3.3), &, ~ N(0, 1), Yy ~ N(0, I),
and At, = t,y1 — t, is the time step. We use the linear variance schedule
Bn = (Bn — B1)2=5 + 51 (1 <n < N) [61], which corresponds to At,, = —3 log(1 —
By-n) (0<n < N-—1). We take N = 1,000, 5, = 10~* and By = 0.05.

A straightforward localization of (6.3.4) is

Yloc,r _ Y;tx:w + Atn ([ _ Qﬁjl?f;;) Ytl:C’T =+ 4/ 2Atn ny

e ~ (6.3.5)
PTOE%Z(Z'J) = Pr_y, (’iaj)1|z'—j|§r-
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We will use (6.3.5) to sample the target distribution with different localization radii
r, and compare it to the reference sampling process (6.3.4). Although the localized
score $°°7 (¢, z) = —P°"z in (6.3.5) is not the minimizer of Ly (sg) (6.1.13), it is

very close to the minimizer, and it still yields a good approximation, see Figure 6.3.

Data sample Generated sample

Figure 6.3: Localized diffusion model: sampling OU process. Left: Trajectories
directly sampled from OU process. Right: Sampled trajectories using the localized
sampling process (6.3.5) with localization radius r = 12.

As all the distributions involved are Gaussian, we can use the sample covariance
to measure the localization error. We take data sample size N = 10% and generated
sample size Ngen = 10*. The results are shown in Figure 6.4. We measure the
relative £%-error of the sample covariance

_ 1€ =Clls

err := i (6.3.6)
where C' = Po_l is the true covariance, C is the sample covariance of samples from
(6.3.4) or (6.3.5), and ||-||, is the matrix 2-norm. The reference error is computed
using the sample covariance of the non-localized backward process (6.3.4). For each
localization radius, we run 30 independent experiments (with new data sample)
and compute the mean and standard deviation of the relative error. The plot shows
that as the localization radius increases, the overall error first decays quickly, and
then gradually increases. This is due to the balance between the localization error
and the statistical error, as shown more clearly in the bottom plots.

In Figure 6.5, we plot the entrywise error of the sample covariance (normalized
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Localization radius

Figure 6.4: Localized diffusion model: error tradeoff in sampling OU process.
Relative (?-error (6.3.6) of the sample covariance for different localization radii r;
the reference error is from the non-localized sampling process (6.3.4). The shaded
area denotes the 1o region.

by ||C|,) for different localization radii r. The localization error dominates when
the localization radius is small, and we can see that the off-diagonal covariance is not
accurately estimated when r = 4. The off-diagonal part is approximately recovered
when r = 12, and the overall error decreases to minimal. As the localization radius
r further increases, the statistical error begins to dominate, leading to spurious long-
range correlations as observed in the case r = 35. This is a well-known phenomenon
caused by insufficient sample size [63]. This suggests a suitable localization radius
is important to balance the localization and statistical error to reduce the overall

error, validating the result in Theorem 6.3.

6.3.2 Cox-Ingersoll-Ross model

We consider the Cox-Ingersoll-Ross (CIR) model [30, 31]

dX = 2a(b — X)dt + oV XdW,, (6.3.7)
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Figure 6.5: Localized diffusion model: entrywise sample covariance error in sampling
OU process with different localization radius r € {4,12, 35}.
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where W} is standard one-dimensional Brownian motion. The CIR model (6.3.7)

possesses a closed form solution

0 e, o) = g

(1 o €f2az‘/)7

where H(t) is a noncentral y-squared distribution with 8ab/o? degrees of freedom
and noncentrality parameter c(t)"te 2% X (0).

We generate artificial data by integrating the CIR model (6.3.7) with an Euler—
Maruyama discretization and a time step of h = 0.01, sampling at every At = 1
time unit. We determine the score from M = 50 independent sample trajectories,
each of length N = 50, i.e., each trajectory covers 50 time units. We choose
a=1.136, b= 1.1 and o = 0.4205.

For the diffusion model we choose a linear variance schedule with g(t) =
(Br — Bo)t/T + By with T' = 0.05, fr = 0.5 and Sy = 0.0001, and where we sample
the diffusion time ¢ € [0, 7] in steps of 0.001 diffusion time units. The discount
factor is given by a(t) = 1 — B(t). The score is estimated from 5,000 randomly
selected training points, differing in their uniformly sampled diffusion times and
initial training sample. To learn the score function we employ a neural network
with 3 hidden layers of sizes 2r 4+ 2, 6 and 3, respectively, with an input dimension
of 2r 4+ 2 coming from the localized states of dimension 2r + 1 and the diffusion
time. The weights of the neural network are determined by minimizing the MSE
error using an Adams optimizer with a learning rate n = 0.00005.

We show in Figure 6.6 a comparison of the empirical histograms and the auto-
correlation functions of the training data and the data generated by the diffusion
model. The histograms are produced from 5,000 training and generated time series.
The auto-correlation function (C(7)) is computed as an ensemble average over the
samples. It is seen that if the localization radius is chosen too small with r = 0, i.e.,
assuming a d-correlated process, the auto-correlation function rapidly decays as
the localized diffusion models have no information about the correlations present
in the data. Interestingly, the empirical histogram is relatively well approximated
even with » = 0. On the other extreme, for large localization radius r = 20 the
number of independent training samples with M = 50 is not sufficiently large to
generate N = 50-dimensional samples, and the auto-correlation function exhibits
an increased variance. We found that a localization radius of » = 2 can be employed

to yield excellent agreement of the histogram and the auto-correlation function.
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We checked that varying the localization radius from r = 2 to r = 8 yields similar

results.
mmm original
1.44 generated B
—— (Caas(7))
¢ (Cgen (1)
1.04 1
0.8
0.6 NS W Sy \ S SO
041 3
0.2 q |
-0.4 !
0.0 |
0.0 2.5 3.0 0 2 4 6 8 10
T
141 = original
generated 10 ¢ B
% —— (Cdata(T))
0.8 iy i,
W —+— (Cgen(T))
0641\ — ]

C(1)
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Figure 6.6: Localized diffusion model: sampling CIR model. Comparison of the
data obtained from the original CIR model (6.3.7) and from the diffusion model for
localization radii 7 = 0 (left), r = 2 (middle) and r = 20 (right). Top: Empirical
histogram. Bottom: Auto-correlation function, averaged over all 2,500 samples.
The dashed lines mark deviations of the sample mean that are 1 standard deviation
away. The light grey lines show the individual auto-correlation functions of the
generated data.
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For the training we estimate the score function at entry ¢ forve =2r+1,..., N —
2r — 1 from the localized state (z,); = [%i_y,..., %4, ..., Tipr] € R¥ T Due to
stationarity of the process, each component of the score function s;((z,);) will be
the same except the boundaries, i.e. ¢ < r or ¢« > d — r. This allows us to train
a single score function which takes a (2r 4+ 2)-dimensional input (2r + 1 for the
localized state and 1 for the diffusion time) to generate a 1-dimensional output
of the score function at location r < ¢ < d — r. To deal with the boundaries of
the time series for i =1,...,7rand i1 = N —r,..., N, we pad with the time series
x, reflected around 7. During the training process we have employed independent
noise for each localized region. We have checked that the results do not change if
the noise in the diffusion model is kept constant for each local input or if varied

when cycling through the localized regions.

6.4 Proofs

6.4.1 Proof of Theorem 6.1

Proof of Theorem 6.1. Recall

() :/N(:Et;atxo,aff)ﬂo(:po)dxo.

We first compute the Hessian of the log density of m:

V27Tt($t) _ Vﬂ't(xt) Vﬂ-t(xt)T

() m(xy) ()

T
! Tt — 4o Ty — Qg )
- 2 ——— | N(zy; I d
wt(xt)/< o? )( o2 ) (24; cuo, 07 1) mo (o) dao
1 Ty — ouT
_ / <_t_2tO> N(21: o, 02T)mo (00) g
1)

T
1 _
/ (—xt—zatxo> N(2; oo, 021 ) mo(20)derg

. ()

V2 logm(z;) =

_ _—4 T
= 0y By, (wolzs) (Tt — o) (21 — o)
—4 T
— 0y Eﬂo‘t(w(ﬂd}t) (1'15 - O‘tx()) Ewo‘t(mout) (xt - Oét{Bo)
_ _—4
— 0y COVW0|t(:Bo|xt) (l’t — Oy, Tt — @txo)

_ 2 _—4
= 040y Covwo‘t(azo\mt) (33'07 [EO) s
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where 7o (wo|2;) is the distribution of 2y conditioned on ;. As a consequence,

V?j log () = afat_‘lCovﬁo‘t(mom) (204, z0,5) - (6.4.1)
Consider the conditional distribution o (2o|7;), whose log density is
1
log mo ¢ (wo|w¢) = —log m(x¢) + log mo(wg) — 557 |2 — ouol|? — B log(2ma?).
¢

Fix x4, and denote for simplicity p(z) = 7o (x|7;). Then
ai

V2log p(z) = V2 log mo(x) — ?1.
t

Note by assumption, V?j logmg = 0if i ¢ Nj, and mI < —V?logmy < MI. So that

Vi ¢ Nj, Vi logp(x)=0.

af 2 at2
m+— | [ 2 =Vlogmy 2 | M + — | I. (6.4.2)
O O

By Theorem 3.5, for any Lipschitz functions f, g, we have
2\ ~ 2 2\ da(i.)
o moy + o
(Covyoy (10,90 < Fly oy (m+ %) (1= T2 )

Recall (6.4.1), and by definition of the matrix norm,

HV?J- logwt(:ct)H = H ||Slﬁp\| tiTV?j log m¢ ()t
till=lt; |I=1

2 _—4 T,. 4T
= sup  ojo; "Covyy (8 @, t; ;) .
£l =I125]1=1

Take f(z;) =t} =; and g(z;) = t] x;, and note | flLip = l9lp, = 1, we obtain

g\ —1 9 9\ da(i,5)
9 9 4 Qg moy + o
Hvij log m(z)|| < afo, <m+—gtz) (1_—Maf+at2) :

The conclusion follows by noting the above bound holds for all ;.
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6.4.2 Proof of Proposition 6.1

Proof of Proposition 6.1. Denote the path measures for the reverse process (6.1.2)
and the sampling process (6.2.1) as Q and Q respectively, i.e., Q; = Law(Y;), Q=
Law(?t). By the data-processing inequality, we have

KL(mllfir 1) = KL(Qr—4l|Qr—1) < KL(Quo 4[| Qur—1)-
By the Girsanov theorem [3], we have
KL(Qjo,r—4l Q[O,T—z])
. =t 5
- KL(QOHQO) + / EytNQt |:||/S\(yt7T - t) - S(yta T — t)H i| de
0
’ 2
— KL(rr||N(0, T)) +/ Epor, |52, 8) = sz, 0)]1°] at.
t
By the convergence of the OU process [3], we have
KL(77[IN(0, 1)) < e 2" KL(m0[[N(0, 1)).

The conclusion follows by combining the above relations. O]

6.4.3 Proof of Theorem 6.2

Proof of Theorem 6.2. Note the optimal solution is given by (6.2.3), i.e.,
S;(x; t) = ]Eq;/,\,ﬂ-t [V] log Wt(fl)‘x'll\/r = qj/\/‘]r] .

By (6.4.2), 1 is (m + ‘;—z)—strongly log-concave, so that the conditional distribution
t

m(z_ N]r]x /\[]r) is also (m + %)—strongly log-concave. By the Poincaré inequality
t
3],

||8;<(£L‘,t) - Sj<$7t)||i12(m)

= Em/\[jrfvm |:Ex'~7'rt |:HS;($/, t) — VJ log Wt(xl)HQ ‘x.l/\/;’r = J}/\/’JT:H

2
/ JEN—
IA/’;‘.I_/\/}’“]] .

o\ —1
(4 38) B [[o s

< EerNﬂ't
J O-t

F
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Here ||-||z denotes the Frobenius norm. By Theorem 6.1, it holds that

ol (1 B mo? + a3 )dc(i’j)

||V log mi(x )”OO = o? (mo? + a?) Mao? + o?

Since HV log 7 (x )HF < d;||V};log m(x) |2, we obtain that

2
Ey o, U‘V}\/;‘Vj logm(m’)HF ’ Thr = xj\/r]

- Z Ep o, [HV log my(x HF ‘ 33}\/; :x/\/jr]

i dG( 7‘])>’f’

4. Z at4 1 _ mat2 -+ ozf 2de(2.7)
J 4 2 1 2 Mo} + o} '

2
idg(inj)>r Ot (moi + af)

IN

Therefore,

T
/0 Hsj(x,t) — s(z, t)HZLQ(m) dt

T J ol ! ot ) mo? + a? 2de(0.3) d
i (mt T e\ T el ol t
0 T o} (mat + af) op T 04

ZdG(7])>r
2 2\ 2k
mao. (6%

< d; i:dg(i,j) =k / (1_—
Z i } o2 ( mat+at)3 Mo? + o?

k=r+1

< djmax{1l,m" Nlogk Z {i:dg(i,j) = K} (1 — x>
k=r+1

IN
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The last step uses Lemma 6.1. By the Abel transformation and the sparsity
assumption (2.1.3),

> Hide(ig) = kH(L =)

k=r+1
= 3 W A - e
k=r+1
= 3 WA - A (1 O] A )
k=r+1
<sk ' 2-—kK Z k(1 — k™
k=r+1
<2k M1 —THTY (k+r)(1— kP
k=1

By Lemma 3.6, it holds that -, ., k"z* < nlz(l —2)7""', so that

ik—i—r 11—kt i( f) k(1 — k)2
k=1

k=1

< (7“ + 1)yzky(1 . l{_l 2k
k=1

(r+1)"v!(1 — /@'_1)2[1 —(1- R—l)Q]—yq
< (r+4 1)1 — 71220,

IN

Combining the above inequalities, we obtain

T
[ I3 (2,8) = 552, 8)][ 12,y
L 2
< / s 1) = 5.0,

< d;max{1,m " }logr - 2sk (1 — k™1)* - (r + 1)"VI(1 — k)22
= Odj(r + 1)"(1 — x~1H)20+D),

where we denote C' = 2smax{1, m ! }v!k* ! log k.
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The second claim follows from the property of conditional expectation:

[80,5(,t) = 5;(2: )| Z2my)
= ||u9,j(515N;7 t) — Sj(x»t)”%%m)

¥

= EINJ,TNM [Ex’Nﬂt |:Hu‘g7j($/\/jr, t) — U;(CU/\/]T, t) + U;(SU/\/],T, t) — Sj(x-/’ t) .CIZ'jva = ZU/\[JT:H

= Evymne |[ts (g, 0) = o (g, 0]

F By (B, |5y, 0) = 507, DP oy = g ]|

= llso(2,t) = (@, )2y + 15 (2, 1) = (2, O[22,
This completes the proof. H

Lemma 6.1. Let k = M/m > 1 and k > 1. It holds that

00 4 2 2\ 2k
/ % 3 (1 — %) dt < max{1,m '}logr(l —rx~ )%,
0 o7 (mo?+a?) Moj + o
o? e 2t 1 dA
Proof. Denote A = — = ——— then o} = d — = —-2\1+ ). Th
roof. Denote il gl en op = 7 and — (14X e

integral is

/OO)\Q(lJr)\)? (1_m+>\>2k dA _/00 A1+ (1_m+>\>2kd)\
o (m+A)’ M+X) 220+A) Jo 2(m+r)° M + A

Let x = A/m, and the integral can be bounded by

ma( +m:c2) (1_m+mx> o
0 2(m+ma) M+ maz

- max{l,m} [* =z <1 1+:€)2kd
— — 1= .
o 2m Jo (L+a) Kt
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Notice

1 * 1+ 2\
1 — —1)2k 7\ 1— dz
(I—=r12Jo (1+2) K+
© ko
()
o (I+x)" \K+w
0 y 1\ 2
/o (k1 +y)? (1+y>
dy
/o (k1 +y)? (1+y>

1

K~ 1 00
d d
< / /ﬁ:zydy—k/ —y—i—/ —g
0 k=1 Y 1Y

=1+ logk < 2logk.

IN

The conclusion follows by combining the above inequalities. O]

6.4.4 Proof of Proposition 6.2

Proof of Proposition 6.2. The first equality directly follows from the definition
(6.2.6). Since only zonr is involved, it suffices to take expectation w.r.t. the
marginal distribution p(zyr).

For the second inequality, notice

7Tt|o($t,/\/;’\330,/v;") - N(CUt,N;; QtTONT 5 o 1).

It holds that

Vjlog myo(wencrlzont) = =0y (w15 — auo ).

Note TENT = Qo NT + 016 ~ 7Tt|0($t7/\/jr|$o7/\/]r) if e, ~ N(0, [,.), so that

2
Ewt,N}Nﬂt\o(xt,N;\wo,N;) {Hué’,j (l’m@m t)—V;jlog WtIO(xt,NﬂxO,/\ff) ‘ ]

1

-1
= EetNN(O,I) lHua,j(atIOJ\/f + Ot T t) + o, €t,j

This verifies the second inequality.

For the third inequality, we first claim that
wj (e, t) = Vjlog m(znr). (6.4.3)
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Given this, the third inequality follows from the basic trick in denoising score
matching: take y = @y nr, 2 = Tonr and 7(y, 2) = mo(zenr, Tonr) in the following
identity:
2
EZNW(Z)EyNW(y\Z) Hse(y) - vy IOgW(?J‘Z)H
2 2
= oo Eyntin [I590) I — 250()) "9, logw(u12) + 17, log w(y) ]
2 2
= Been(Eyrel) [I50(0) |7 + 2 (Vo(3)) + [V, log m(y12) ]
= Eyrty [0+ 205 (Vs0(9) + [V, log w(y)[*] + const
= IEymr(z,/) ||39(y) - vy logﬁ(y)HQ + const.

Here the second inequality follows from integration by parts; in the third inequality,

we take
2 2
const = Ezwﬂ(z)Eyww(y|z) ||vy 1Og 7T(y|2’) || - ]EyNW(y) ||vy 1Og ﬂ-(y> || )

which is independent of #; the last equality follows from the same integration by

parts trick.
It then suffices to prove (6.4.3). Note that

u;(xt7./\/']7."7 t) = Em;wﬂ't [53(%27{;)‘]};#\/’; = xt,./\/f]
1
- —Wt(SUN;) /Vj log m(@enr, Tt —nr )T (@i, T, —nr ) Ay, —pr
o fvjﬁt(xt,./\/’faxt,—j\/’;)dilft’_./\/’jr
fﬂt(xt,/\/;raxt,—j\/j?’)dxt’_j\/‘jr

Since
m(xy) = /N(ZBt; atxo,af[)ﬂo(xo)dxo.
= Vm(zy) = / (—Jt_?(q;m — o)) N(z; g, 021 )mo (w0 )dag.
So that

[ (=072 (215 — auwoj)) N(2; oo, op Imo(wo)dwoda,

J N(z¢; o, U?])?To(l'o)dl'odl't’_j\/’;

wj (@, t) =

J (=% (21j — awzo ) N(zowrs aszons, of Dmo(wony ) dzo
i N(xwvjr;Oztilfo,/\/;,0752[)”0(5130,/\/;)(1350,/\7 '
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On the other hand,

V;log my(ze )
B Vjime(ze ) B fVjN(SUt,NjT;Oétl’o,N]MUEI)WO(IO,J\/})dxﬂ,Nf
LACYY N fN(Ity_/\/‘;’;Oét$07A/Jr,U%])?To(l‘oy./\/‘]r)dxo’j\/;
B [ (=0 (21; — cauo ;) N (i w75 quonr, 07 1)mo(wo vr)dao
B fN(It,N]T;Oétxo,/\/jﬁU?DWO(JUO?N})dIOM\ff

— u;(xt,_/\/;‘,t)

This completes the proof. H

6.4.5 Proof of Theorem 6.3

Proof of Theorem 6.3. By the Pythagorean equality (6.2.5),
Epr, |[5(21,1) = s(ar, )]
Tt~Tt 7\Lt ts
Z 13521, 1) = 5 (@, 1)

b

]ESL'tNﬂ't |:||§]($t,t) - S;(.I't,t)||2:| + ZEiL'tNWt |:||S;<<.Z't7t) - Sj(xtat)H2:| .

1 j=1

I
Mcr I

<.
I

Combining Proposition 6.1 and Theorem 6.2, we obtain

T
KL (mil|fir—) < e T KL(mo[IN(O, D)) + / By, |[5(21,1) = (2, D)1°] d

= e 2TKL(mo||N(0, 1)) + /tT Esyom, [Hs*(:ct, t) — s(z, t)|| ] dt +R

e 2TKL(mo|IN(0, 1)) + Cd(r + 1) 0 +) 4 R,

where we denote

RS [l -

By Proposition 6.2, R; is the j-th component loss of the score function when we
use a standard diffusion model to approximate the marginal distribution 7o(zyr).

Note one can use the same constructive solution as in [84] for the marginal target
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mo(x er) with only the j-th component output as the constructive solution for sj,
and the statistic error analysis similarly applies.

Therefore, we can take the same hyperparameters as in [84]:

L7 = O(log" n;), ‘Wj”oo = O(n; log® n;), S = O(n, log® n;), B/ = no(loglognj)’

J

where n; = N~%/(7%d) " Note n, N in our paper correspond to N,n in [84]
respectively. Similarly for the time interval choices: t = O(N~F) for some k > 0
and T' < log N. The j-th component loss R; is smaller than the overall score

matching loss, which is further bounded in Theorem 4.3 in [84]:
2
Eqxonn [Rj] <C'N- 747 log!'® N.

Therefore,
b .
Exoyy, [R] =) Exoyy, [Rj] < C'bN %r# log!® N.
j=1

This completes the proof. H
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Chapter 7

Conclusions and Future Work

In this thesis, we presented a comprehensive study of the theory and numerical
methods for localized sampling in high dimensions by leveraging locality structure.

Our main contributions are twofold:

1. Marginal Stein’s method. We developed a new analysis method for localized
distributions, deriving a dimension-independent marginal transport inequality
and rigorous proofs of exponential correlation decay. These results clarify how
sparse dependencies control the propagation of errors and form the foundation

for localization methods in sampling.

2. Localized sampling algorithms. Motivated by the theoretical insights, we for-
mulated a general framework to reduce global samplers into a collection of
low-dimensional, neighborhood-based samplers. Our study of MALA-within-
Gibbs and localized diffusion models demonstrates that localization can greatly
reduce both computational cost and sample complexity without sacrificing

accuracy, making them potentially more efficient for large-scale applications.

By combining rigorous theory with practical algorithm design, this thesis laid
the groundwork for a new class of sampling methods that can overcome the curse
of dimensionality. Beyond these studies, the marginal Stein’s method offers a
new tool for analyzing more sampling or variational algorithms for problems with
locality structures. The localization framework also brings new methods for scalable
inference in graphical models, spatiotemporal processes, and large-scale Bayesian
inverse problems.

Building on the results of this thesis, there are several future research directions:

e Adaptive localization. Design sampling algorithms that adaptively learn the
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locality structure. This broadens the applications of localization to problems

with unknown or dynamic dependencies.

e Multiscale generalization. Combine localization with global dimension reduc-

tion techniques.

e Applications to deep generative models. Understand how locality structures
in the data distribution or the neural network architecture can be exploited to

improve the learning and generation performance of deep generative models.

We believe that the localization framework will continue to inspire new theoret-
ical insights and practical algorithms for high-dimensional sampling problems, and

we are excited to see how it develops in the future.
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