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Summary

Sampling from high-dimensional probability distributions is a fundamental challenge

in computational mathematics and data science. It is often hindered by the curse

of dimensionality (CoD), leading to prohibitive computational and statistical

complexity. This thesis introduces and rigorously analyzes the localization method,

which exploits sparse dependency structures to develop samplers whose complexity

depends only mildly on the ambient dimension.

We begin by formalizing localized distributions as Markov random fields on

graphs with polynomially growing neighborhood volumes. To quantify locality, we

develop the marginal Stein’s method, a novel analytical framework that (1) yields

a dimension-independent marginal transport inequality, which bounds marginal

1-Wasserstein distances by local score di!erences; and (2) establishes exponential

decay of correlations between distant components.

Building on this theory, we propose a general localization framework that

constructs localized samplers by combining local samplers for the marginals. We

study two examples: (1) We apply the MALA-within-Gibbs sampler to an image

deblurring problem with smooth approximation, prove that its smoothing error

is independent of total dimension, and demonstrate substantial speed-ups via

local and parallel implementation. (2) We introduce localized di!usion models,

where a localized score function is learned and used. We prove that localization

can circumvent CoD with only an exponentially decaying error. We show both

theoretically and numerically that a moderate localization radius can balance the

statistical and localization error to achieve a better overall performance.
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Chapter 1

Introduction

This thesis studies the localization method for sampling from high-dimensional

probability distributions. Sampling in high dimensions is a fundamental problem

in computational mathematics, with a wide range of applications in data science,

Bayesian statistics, and machine learning. However, it poses computational chal-

lenges due to the curse of dimensionality (CoD). This underscores the importance

of better understanding and exploiting low-dimensional structures in the target

distributions. In this thesis, we study the locality structure, which captures sparse

dependencies between model components. We propose the localization method

to exploit the locality structure for developing e”cient sampling algorithms in

high dimensions. This thesis aims to provide a comprehensive study on both the

theoretical and algorithmic aspects of the localization method in sampling.

We introduce the marginal Stein’s method, a novel analytical framework for

quantifying the e!ects of locality in high-dimensional distributions. Leveraging

this method, we derive a marginal transport inequality and prove that distributions

with a locality structure exhibit exponential decay of correlations. We also discuss a

Langevin semigroup interpretation of the method, which presents its own theoretical

interest. In the algorithmic aspect, we discuss the general principle of localized

sampling, which e!ectively reduces a high-dimensional sampling problem to a

collection of low-dimensional subproblems. To illustrate the approach, we present

in detail the MALA-within-Gibbs sampler and the localized di!usion models. The

theoretical and empirical investigations validate the e!ectiveness of the localization

method in high-dimensional sampling problems.
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1.1 Motivation

Sampling from high-dimensional distributions is a fundamental challenge in compu-

tational mathematics and data science. Denote ϖ → P(Rd) as the target distribution,

where d ∋ 1 is the dimension of the state space. The sampling task is to draw

samples

X
(1)
, X

(2)
, . . . , X

(n) ∈ ϖ,

This task has many scientific and engineering applications, including uncertainty

quantification [107, 50], data assimilation [74, 93], Bayesian inference [106, 13],

statistical physics [10, 11], and machine learning [59, 67, 61].

One of the central challenges in sampling is high dimensionality, which may arise

from several sources: (i) the large number of model parameters (e.g., the neural

networks); (ii) the large data size; (iii) discretization of continuous models; (iv)

large and complex systems (e.g., the climate models). Sampling in high dimensions

is often hindered by the curse of dimensionality (CoD) [59], which refers to the

general phenomenon where the computational or sample complexity of an algorithm

grows exponentially with the dimension of the problem. This makes many standard

sampling methods di”cult to scale to high dimensions.

To mitigate the CoD, it is crucial to understand and exploit low-dimensional

structures in the target distributions. Manifold hypothesis [45] is one of the

widely studied structures, which assumes that the data lies on a low-dimensional

manifold. Many dimension reduction methods in sampling are based on this

structure, e.g. stochastic spectral methods [79], likelihood-informed subspace (LIS)

method [34], Manifold Metropolis-adjusted Langevin Algorithm (MMALA) [51],

and variational autoencoders (VAEs) [67].

While manifold hypothesis can cover many applications, there are still important

cases left open. A large class of high-dimensional distributions are those with locality

structure, which captures sparse dependencies between model components [49, 58,

37, 110]. Such sparse dependencies can be modelled by an Markov random field,

also known as undirected graphical model [24, 69]. It introduces an undirected graph

G = (V,E) to represent the dependencies between model components. Each edge

in G encodes a direct dependency between two components. Or equivalently, two

components that are not connected by an edge in G are conditionally independent,

2



i.e. let (Xu)u↓V be the Markov random field labelled by the vertices in V, then

Xu ∞∞ Xv | XV\{u,v}, ↖(u, v) /→ E. (1.1.1)

Consequently, a sparse graph G indicates that most components only depend

directly on a small subset of others. This sparsity reflects a certain low-dimensional

structure, which can be leveraged to mitigate the CoD in sampling. In recent years,

this structure has attracted a growing interest, with many new methods developed

for e”cient sampling [121, 81, 110, 57]. In this thesis, we refer to these methods as

localization methods, which essentially turn a high-dimensional sampling problem

into a series of lower-dimensional problems in an exact or approximate manner by

exploiting the locality structure.

However, despite recent advances, the theoretical understanding of these methods

remains limited. Most existing approaches are ad hoc, and often developed without

rigorous guarantees. This thesis aims to fill this gap by developing a theoretical

framework to analyze the locality structure and the localization method in sampling,

which provides the foundation for the design and analysis of localized samplers in

high dimensions. We will focus on two main questions:

Question 1. How to relate the locality structure to quantitative properties of the

target distribution?

Question 2. How to exploit the locality structure to develop e”cient sampling

algorithms in high dimensions?

1.2 Literature review

1.2.1 Dimension reduction in sampling

Dimension reduction is the common strategy to mitigate the CoD in sampling. One

class of methods seeks a low-dimensional subspace that captures the most important

directions along which the distribution or the likelihood changes most significantly.

These methods include likelihood-informed subspace (LIS) method [34], active

subspace method [28], or certified dimension reduction [120]. For instance, in LIS,

the subspace can be identified using the leading eigenvectors of a Gram matrix of

the gradient of the log-likelihood function, i.e.

H = Ex≃ω

[
∝ log l(x)(∝ log l(x))T

]
.

3



These methods are among the most widely applied dimension reduction methods in

sampling, due to their low computational cost, simple implementation, and certified

approximation error [32, 35, 120].

There are also other methods based on the low-dimensional subspace or man-

ifold. [79] proposes to use spectral methods to find reduced representation of

the parameters using polynomial chaos expansion. [51] proposes the Riemann-

manifold Hamiltonian Monte Carlo (RMHMC) and Manifold Metropolis-Adjusted

Langevin Algorithm (MMALA), which exploit the Riemannian geometry to im-

prove the sampling e”ciency. [29] proposes the preconditioned Crank-Nicolson

(pCN) sampler, which avoids the curse of dimensionality by operating directly in

the infinite-dimensional setting. Modern generative models, such as variational

autoencoders (VAEs) [67], generative adversarial networks (GANs) [54], and latent

di!usion models [97] all leverage certain low-dimensional latent structures.

While these concepts of low e!ective dimension can cover many applications,

there are still important cases left open. One large class of high-dimensional

distributions are those with locality structure. In recent years, there has been

a fast growing interest in sampling methods that leverage locality structures

[121, 81, 110, 57]. [81] propose to apply the localization technique in Markov

chain Monte Carlo (MCMC) and introduces a localized Metropolis-within-Gibbs

sampler. [110] extends this idea and develops the MALA-within-Gibbs sampler,

which is proven to admit a dimension independent convergence rate. Beyond

MCMC, [121] proposes message passing Stein variational gradient descent. It finds

the descent direction coordinate-wisely, and reduces the degeneracy issue of kernel

methods in high dimensions. [57] proposes a localized version of the Schrödinger

Bridge (SB) sampler [55], which replaces a single high-dimensional SB problem

by d low-dimensional SB problems, avoiding the exponential dependence of the

sample complexity on the dimension. Detailed discussions on these methods are

presented in Chapters 4 and 5.

1.2.2 Markov random fields

In probability and physics, locality structure is often modelled by Markov random

fields (MRFs), also known as Markov network or undirected graphical models

[24, 118, 69]. The concept of MRFs came from attempts to generalize the seminal

Ising model [65] to more general settings. Mathematical foundation of MRFs is

established in the 1970s [25, 1, 91]. A remarkable result is the Hammersley-Cli!ord

4



theorem proved by Hammersley and Cli!ord in an unpublished manuscript [25],

which states the equivalence between MRFs and Gibbs random fields, whose density

can be factorized over the cliques of a graph (i.e. , c.f. Section 1.5.2):

ϖ(x) △
∏

C↓C
ςC(xC),

where C denotes the collection of cliques in the graph, xC is the restriction of x

to the vertices in C, and ςC is the clique potential. This factorization is known as

clique factorization. Also remarkable is the earlier work of Dobrushin [39], Lanford

and Ruelle [73] on the existence and uniqueness of Gibbs measures. In particular, it

is guaranteed by the renowned Dobrushin condition on the conditional distributions

[39]. More interesting results on MRFs are documented in [66, 118, 69].

Exponential decay of correlations is an important property of MRFs in the high-

temperature or weakly-coupled regime, which states that the correlations between

di!erent components decay exponentially with their distance. A vast literature

in statistical physics and probability theory has been devoted to establishing this

property under di!erent conditions [71, 40, 70, 41]. It has also been studied in

di!erent contexts due to its broad range of applications.

A basic formulation of exponential decay of correlations can be cast in a linear

algebraic form [38, 6]. Let A → Rd⇐d be a banded and positive matrix, i.e. A(i, j) = 0

if |i↓ j| > B and mI ▽ A ▽ MI for some 0 < m ⇓ M < ′. Then

|A↘1(i, j)| ↭ φ
↘|i↘j|

,

for some φ → (0, 1). In probability language, this means if the precision matrix A of

a Gaussian distribution is banded, then the covariance matrix A
↘1 has exponentially

decaying properties.

In quantum mechanics, the exponential decay of correlations are abstracted

as the nearsightedness principle [68], which states the properties of a quantum

system are primarily determined by local interactions and are insensitive to distant

perturbations. The principle can be formalized as the exponential decay of the

density operator ↼(r, r⇒) w.r.t. the physical distance ↘r ↓ r
⇒↘ [68, 53, 7], i.e.

|↼(r, r⇒)| ↭ exp (↓↽ ↘r ↓ r
⇒↘) .

This enables e”cient sparse approximation of ↼, which can be regarded as the
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quantum version of localization of distributions.

1.2.3 Localization method

Due to the ubiquitous presence of locality structures, various localization methods

has been developed in di!erent fields, including numerical linear algebra [6, 99],

spatial statistics [8, 112, 37], data assimilation [63, 58, 92] etc. See [60] for a

comprehensive review on more applications in physics, biology, and data science.

In numerical linear algebra, the incomplete Cholesky preconditioners [26] are

developed for solving large block tridiagonal linear systems. The preconditioner is

taken as a banded matrix approximation of the inverse of target tridiagonal matrix.

Similar to it is the sparse Cholesky factorization [99], where it uses a KL loss to

approximate the Cholesky factorization subject to a sparsity pattern S ↔ [d]↗ [d]:

L = argmin
L̂↓S

KL

(
N(0, C)↘N(0, (L̂L̂T)↘1)

)
.

Here S = {L → Rd⇐d : ↖(i, j) /→ S ̸ Lij = 0}. The computational cost is signifi-

cantly reduced, achieving nearly linear scaling in space complexity. Localization

trick is also used in computation of matrix functions f(A) [6]. A popular approach

is Chebyshev polynomial approximation (suppose spec(A) ↔ [↓1, 1])

f(A) ≈ PN (A) :=
N∑

k=0

ck(f)Tk(A),

where Tk is the k-th Chebyshev polynomial. When A → Rd⇐d is banded, the

computational cost of PN(A) can be reduced to O(d). This is a typical linear

scaling method in electronic structure computation [53]. For more discussions on

localization methods in numerical linear algebra, we refer to [6].

In spatial statistics, the Vecchia approximation [112] proposes to approximate

Gaussian processes by removing conditioners at large distances, i.e.

ϖ(X1)
d↘1∏

i=1

ϖ(Xi+1|X1:i) ≈ ϖ(X1)
d↘1∏

i=1

ϖ(Xi+1|XNi+1⇑[i]),

where Ni+1 ∀ [i] only contains a small subset of preceding points, thus largely

reduces the complexity of sampling. Various extensions have been proposed based

on the nearest-neighbor approximation idea, see a brief review in [37]. It is also
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pointed out in [99] that the Vecchia approximation can be interpreted as a localized

Cholesky decomposition.

In data assimilation, localization methods [63, 58] are introduced to mitigate

spurious long-range correlations arising from small ensemble sizes in the ensemble

Kalman filter. For instance, the covariance localization artificially removes or

dampens long-range correlations in the ensemble covariance Ĉ, i.e.

Ĉloc = # ∃ Ĉ, #ij = ⇀(|i↓ j|),

where ∃ denotes the Hadamard product and ⇀ : N ⇔ R+ is a rapidly decaying

function. Such localization methods have been shown to e!ectively reduce sampling

errors and improve filter accuracy [63, 58, 92].

1.2.4 Other related works

Stein’s method

Stein’s method is a useful approach for quantifying distances between probability

distributions. First developed in [104] for Gaussian approximation, it has been

extended to various distributions, including Poisson [17], binomial [105], and

high dimensional settings [96, 23]. We refer to Stein’s monograph [105] for a

comprehensive review.

Analysis of di!usion models

Since the introduction of di!usion models (DMs) [101, 61, 102], there has been a

surge of interest in understanding their theoretical properties. Analysis of localized

di!usion models in Chapter 6 is built on two main lines of research: the convergence

of DMs and the statistical analysis of DMs. A comprehensive review of all related

work is beyond the scope of this thesis; we refer to [19, 47] for an in-depth overview.

The convergence of DMs considers error bounds of the sampled distribution

given the learned score function. Early work [75] provides a TV guarantee by

assuming a log-Sobolev inequality. Later, by using Girsanov theorem, this condition

is relaxed to bounded moment conditions [22, 16]. A growing body of work is trying

to further relax assumptions and improve error bounds. For instance, [5] proves

a linear-in-dimension bound under the KL divergence, [27] uses a relative score

approach and derives bounds without early stopping. [90] considers the manifold
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data, and improves the bound of the discretization error to scale linearly with the

manifold dimension.

The statistical analysis of DMs essentially studies the sample complexity of

estimating the score function. [84, 117] prove that the di!usion model reaches the

minimax rate for distribution estimation. To avoid the CoD, [84, 18] considers linear

subspace data, and later [109, 2] extends it to general manifold data. Recently, [119]

relaxes the manifold assumption, and improves the ambient dimension dependency

in the generalization bound. Other types of low-dimensional structures are also

considered. [100] considers certain Gaussian mixtures, and shows that the sample

complexity does not depend exponentially on the dimension. [47] further extends

it to general Gaussian mixtures with edited di!usion models.

A recent work [80] considers similar settings as ours. They apply the di!usion

models for high-dimensional graphical models. Inspired by variational inference

denoising algorithms, they design a residual network to e”ciently approximate the

score function, and prove that its sample complexity does not su!er from CoD.

But their result depends on an explicit solution of the denoising algorithms, and

only applies to Ising-type distributions. Our localized di!usion model, however,

applies to general high-dimensional graphical models.

1.3 Contributions

The main contributions of this thesis are twofold: (i) theoretical development

of the marginal Stein’s method, which provides a quantitative analysis method

for the locality structure and localization method in sampling; (ii) algorithmic

development of localized samplers, which reduces a high-dimensional sampling

problem to a collection of low-dimensional subproblems; this includes two case

studies: an application of the MALA-within-Gibbs sampler adapted to an image

deblurring problem, and the design and analysis of localized di!usion models.

For the theoretical aspect, we develop the marginal Stein’s method, a novel

analysis method for quantifying the e!ects of locality in high-dimensional distribu-

tions. The method provides an approach to translate the structral assumptions of

the target distribution into quantitative properties.

Specifically, we define (s, ϱ)-local graph G = (V,E) that has a controlled growth

rate of neighborhood sizes: for any i → V, denote N r

i
as the set of vertices that

are within distance r of i, then |N r

i
| ⇓ 1 + sr

ε . We prove that such structural
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assumption leads to many interesting properties of Markov random fields that are

associated with such local graphs. These include

• marginal transport inequality (Theorem 3.3):

max
i↓[b]

W1(ϖi, ϖ
⇒
i
) ⇓ cω→ ·max

j↓[b]
↘∝j log ϖ

⇒ ↓∝j log ϖ↘L1(ω) , (1.3.1)

which provides a refined control of the 1-Wasserstein distance between marginal

distributions ϖi, ϖ⇒
i
, and here cω→ is a dimension-independent constant;

• exponential decay of correlations (Theorem 3.5):

|Covω (f(xi), g(xj))| ↭ exp (↓cωdG(i, j)) , (1.3.2)

which states that the correlations between di!erent components xi, xj decay

exponentially with their distance dG(i, j).

Some generalizations of the above results are discussed for application purposes.

We also discuss technical aspects of the method. We interpret the marginal Stein’s

method from a Langevin semigroup perspective (Theorem 3.8), which presents its

own theoretical interest.

For the numerical aspect, we propose a framework to localize existing samplers,

that is, to build samplers by combining local samplers for the marginals (see

Chapter 4). This e!ectively reduces a high-dimensional sampling problem to a

collection of low-dimensional subproblems. The resulting localized sampler is

essentially a Gibbs-type sampler that samples each component Xi conditionally on

its neighbors XN r
i
in the locality structure, i.e.

P
loc(x, y) =

∏

i↓[b]

Pi(xi, yi | xN r
i
). (1.3.3)

Here Pi are local transition kernels that update the component xi to yi conditioned

on its r-neighbors xN r
i
= {xj : dG(i, j) ⇓ r} (see (2.1.2)). The validity of such

localization is supported by exponential decay of correlations (1.3.2). It ensures

that the localization error introduced by ignoring distant components is typically

exponentially small in r, which is in general much smaller than the statistical error

when learning or sampling with a high-dimensional sampler. The advantanges of

the localized sampler include:
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• Localized and parallelable. Localized implementation reduces the computa-

tional cost, and parallelization allows for faster sampling.

• Reduced statistical complexity. In many generative tasks, the sampler should

be learned or partially learned from data. Learning localized samplers can

circumvent the CoD due to its intrinsic low-dimensional nature.

• Controlled localization error. The localization error can be controlled using

the marginal Stein’s method.

We study in detail two concrete examples of localized samplers:

• MALA-within-Gibbs (Chapter 5), which localizes the classical Metropolis-

adjusted Langevin algorithm (MALA). We apply this method to an image

deblurring problem with smooth approximation. We prove that the approxi-

mation error is dimension independent by the marginal tranport inequality

(1.3.1). We also show how to implement MALA-within-Gibbs in a localized

and parallelized manner, which significantly accelerates the sampling process.

• localized di!usion models (Chapter 6), which localizes the modern score-based

di!usion generative models. We propose to use localized score matching to

train the score function in di!usion models within a localized hypothesis space.

We prove that such localization enables di!usion models to circumvent CoD,

at the price of additional localization error. We show both theoretically and

numerically that a moderate localization radius can balance the statistical

and localization error, leading to a better overall performance. The local-

ized structure also facilitates parallel training of di!usion models, making it

potentially more e”cient for large-scale applications.

1.4 Thesis outline

The structure of the thesis is outlined in Figure 1.1. In Chapter 2, we begin by

introducing the notion of locality structure. We then develop the marginal

Stein’s method in Chapter 3, which provides a framework to analyze the locality

structure and localization method in sampling. Specifically, we derive in Section 3.1

a marginal transport inequality and establish in Section 3.2 the exponential

decay of correlations in localized distributions. Some technical aspects of the

marginal Stein’s method are then discussed in Sections 3.3 and 3.4. In Chapter 4, we

10



summarize the general principle of localization method in sampling. Then we

introduce two concrete examples: the MALA-within-Gibbs sampler in Chapter 5,

and the localized di!usion models in Chapter 6. Finally, we conclude in

Chapter 7 with a summary and a discussion of future research directions.

Chapter 2
Structure: Locality Structure

Chapter 3
Theory: Marginal Stein’s Method

Chapter 4
Method: Localization in Sampling

Chapter 5
MALA-within-Gibbs

Chapter 6
Localized Di!usion Models

Chapter 7
Conclusion

Figure 1.1: Structure of the thesis

1.5 Preliminaries

In this section, we introduce some basic concepts in probability theory and graph

theory that are frequently used throughout the thesis. The materials presented

here are from standard textbooks, e.g. [42, 3, 12].

1.5.1 Probability theory

A probability space is a triple ($,F ,P), where $ is the sample space, F is a

⇁-algebra on $, and P is a probability measure on ($,F). Denote B(X ) as the

Borel ⇁-algebra on a topological space X .
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Independence and conditioning

Two random variables X, Y are independent if for any events C,D,

P(X → C, Y → D) = P(X → C) · P(Y → D).

Let G be a sub-⇁-algebra of F . The conditional expectation of a random variable

X given G is a random variable E[X | G] that is G-measurable and satisfies

↖A → G, E [E[X | G] · 1A] = E[X1A].

The conditional probability of an event A is defined as P(A | G) = E[1A | G]. The
conditional distribution ϖX|G = ‘Law (X | G)’ is defined as

ϖX|G(· | G) = P(X → · | G).

Note it is a R-valued G-measurable random variable. It is called regular if for any

ω → $, ϖX|G(· | G)(ω) is a probability measure on (X ,B(X )). Let Y be a random

variable, the conditional expectation, conditional probability, and conditional

probability distribution of X given Y are defined similarly by taking G = ⇁(Y ),

the ⇁-algebra generated by Y . We say that two random variables X and Y are

conditionally independent given Z if for any events A,B,

P(X → A, Y → B | Z) = P(X → A | Z) · P(Y → B | Z).

Markov kernel

A transition kernel K from (X ,B(X )) to (Y ,B(Y)) is a function

K : X ↗ B(Y) ⇔ R→0.

For function f : Y ⇔ R, measure ϖ → P(X ), define function Kf : X ⇔ R and

measure ϖK → P(Y) as

Kf(x) :=

∫
K(x, dy)f(y), ϖK =

∫
ϖ(dx)K(x, ·).

For two kernels K1 : X ↗ B(Y) ⇔ R, K2 : Y ↗ B(Z) ⇔ R, define kernel K1K2 as

K1K2(x, ·) = K1 ∃K2(x, ·) =
∫

K1(x, dy)K2(y, ·).
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A Markov kernel K is a transition kernel such that K1 = 1, or equivalently,

↖x → X , K(x,Y) ↙ 1.

1.5.2 Graph theory

An undirected graph G consists of a set of vertices V and edges E ↔ V ↗ V.

In this thesis, we allow self-loops, but do not allow multiple edges between the

same pair of vertices. For finite graph, denote b = #V, and attach each vertex

with a unique index i → [b]. We denote i as the vertex for simplicity. An (induced)

subgraph G
⇒ = (V⇒

,E
⇒) of G with vertex set V⇒ ↔ V includes all edges in G that

connect two vertices in V
⇒, i.e. E⇒ = {(i, j) → E : i, j → V

⇒}.

Cliques

A complete graph is a graph in which every pair of distinct vertices is connected

by an edge, i.e. ↖i, j → V, i ¬= j ̸ (i, j) → E. A subset of vertices C ↔ V is called a

clique if C is a complete graph as a subgraph of G, i.e. every pair of vertices in C

is connected by an edge. Denote C = C(G) as the collection of all the cliques in G.

A maximal clique is a clique C → C that is not strictly contained in any larger

clique, i.e. ↖A ⊋ C ̸ A ¬→ C.

Path and graph distance

A path in G is a sequence of distinct vertices (i0, i1, . . . , il) s.t. (ik↘1, ik) → E for

k → [l]. We say it is a path from i0 to il (or connecting i0 and il) with length l.

The graph distance dG(i, j) between two vertices i, j → V is the length of the

shortest path connecting them, i.e.

dG(i, j) = inf{l → Z+ : ⇑ path from i to j with length l}. (1.5.1)

For simplicity, we let

• dG(i, i) = 0 for all i.

• dG(i, j) = ′ if no path from i to j exists.

The average path length is defined as

ϑG =
1

b(b↓ 1)

∑

i ↔=j

dG(i, j). (1.5.2)
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Note the average path length measures how a graph is connected.
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Chapter 2

Locality Structure and Localized

Distribution

Locality is an important structure of many physical systems. The principle of

locality in physics states that an object is influenced directly only by its immediate

surroundings. In other words, physical interactions are inherently local, and any

influence from a distant event must propagate through the intermediate space.

Consequently, many spatial or temporal models exhibit the locality structure. A

most celebrated example is the Ising model in statistical mechanics, where the

interaction between spins is limited to nearest neighbors. Understanding how the

locality structure a!ects the properties of the system is an important problem in

statistical mechanics and many other fields. In applications, the locality structure

provides a promising strategy for designing scalable algorithms that can potentially

mitigate the curse of dimensionality. The idea has been studied across various

fields, including data assimilation, spatial statistics, image processing, and quantum

mechanics. In recent years, there has been a fast growing interest in sampling

methods that leverage the locality structure. We aim to provide a clear and

quantitative characterization of the locality structure in this chapter.

In this chapter, we first introduce the Markov random field to model the locality

structure. Next we define the central concept of this thesis, localized distributions,

as Markov random fields on localized graphs. We will discuss the key properties of

localized distribution and its relaxations.
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2.1 Locality structure

2.1.1 Markov random field

Markov random field (MRF), also known as the Markov network or the

undirected graphical model, is a widely adopted mathematical tool to model the

locality structure in distributions. In this section, we introduce the mathematical

foundation and important properties of MRF. We will refer to MRF on a localized

graph as localized distribution, a central concept in this thesis that will be used

frequently in the following chapters.

In short, a MRF X = (Xi)i↓V is a collection of random variables defined on an

undirected graph G = (V,E) and satisfies the Markov property

Xi ∞∞ Xj | XV\{i,j}, if (i, j) /→ E.

Here X ∞∞ Y | Z denotes the conditional independence of X and Y given Z. The

Markov property, or the conditional independence, precisely characterizes how the

random variables are locally dependent. And the dependence structure is encoded

in the dependency graph G.

In the following, we will introduce the locality of a graph to quantify the locality

structure of MRF. We will also introduce several equivalent characterizations

of MRF that are useful both theoretically and practically. For more detailed

discussions on MRF, we refer to [66, 118, 69].

2.1.2 Localized graph

We first introduce some basic notations and definitions of graphs, which will be

used to characterize the underlying dependency graph of MRF. For a more detailed

introduction to graph theory, we refer to Section 1.5.2.

Let G = (V,E) be an undirected graph. Let b = #(V), and we identify vertices

in G with indices i → [b]. For convenience, we assume E contains all self-loops, i.e.,

↖i → [b], (i, i) → E.

For immediate neighbors, we denote

i ∈ j i! (i, j) → E.
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Note ∈ is a symmetric and self-reflexive, i.e.

• Symmetric: i ∈ j ⇒ j ∈ i.

• Self-reflexive: ↖i → [b], i ∈ i.

We denote the neighborhood of vertex i as

Ni = {j → [b] : i ∈ j}. (2.1.1)

To quantify the sparsity of the graph, we define the r-neighborhood of i as

N r

i
= {j → [b] : dG(i, j) ⇓ r}, (2.1.2)

where dG(i, j) is the graph distance (1.5.1) between i and j, i.e. the minimum

number of edges that must be traversed to go from i to j.

Figure 2.1: Blue vertices: 2-neighborhood of vertex 5 (N 2
5 )

For a graph that represents the locality structure, the growth of the neighborhood

volume #(N r

i
) with the radius r should not grow too fast. In many spatial models,

it grows at most polynomially, with an order determined by the dimension of

the ambient space in which the graph is embedded. This motivates the following

definition of localized graph.
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Definition 2.1 (Localized graph). An undirected graph G is called (s,ω)-local for

some s, ϱ → Z+, if it satisfies:

↖i → [b], r → Z+, |N r

i
| ⇓ 1 + sr

ε
. (2.1.3)

In the above definition, s denotes the size of the immediate neighbors, and ϱ is

the ambient dimension of graph, which controls the growth rate of the neighborhood

volume with the radius. An important quantitative feature of localized graph is

that s and ϱ are O(1) constants compared to the problem dimension, which ensures

e!ective locality of the graph. The polynomial growth of the neighborhood volume

with the radius r is a key aspect of this locality.

Localized graph arises naturally in discretization of spatial models. A typical

example is the mesh grid in numerical PDEs. Due to the locality of the di!erential

operators, most PDEs are local, and their spatial discretization leads to a localized

graph. This is explicitly represented by the sparsity of the discretized di!erence

operators in finite di!erence methods, or the sparsity of the sti!ness matrix in

finite element methods.

Example 2.1. A motivating example for Definition 2.1 is the lattice model Zε ,

where the neighborhood of a vertex i → Zε is defined as

Ni = {j → Zε : ↘i↓ j↘1 ⇓ 1}.

In this model, a naive bound of the r-neighborhood volume is

|N r

i
| = |{j → Zε : ↘i↓ j↘1 ⇓ r}| ⇓ (2r + 1)ε < 1 + (3r)ε .

So that the lattice model Zε is (3ε , ϱ)-local.

Remark 2.1. For graphs, locality is a stronger condition than the sparsity. Sparsity

of a graph only requires that |E| = O(b), or the average degree = O(1). But locality

requires more than that. The slow growth of the neighborhood volume in localized

graph results in a large average path length (1.5.2). This excludes some sparse

graphs, including the small-world network [116], where short-cuts are allowed. For

graphs with short-cuts, the neighborhood volume typically grows exponentially

with the radius.
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Figure 2.2: Two-dimensional lattice model

2.1.3 Markov property

We proceed to define the MRF on a localized graph G by the Markov property.

Consider an undirected graph G = (V,E) with b vertices. Attach each vertex

i → [b] with a measurable space (Xi,Fi). Denote their product space as (X ,F) =

(
⊗

i↓[b]Xi,
⊗

i↓[b]Fi).

Definition 2.2. A MRF on G is a collection of random variables X = (Xi)i↓[b] in

the space (X ,F) such that

↖i → [b], Xi ∞∞ X[b]\Ni
| XNi\{i}, (2.1.4)

where Ni is the neighborhood of i (2.1.1).

(2.1.4) states that the random variable Xi is conditionally independent of all

other random variables given its immediate neighbors. If (2.1.4) holds, we call

G a dependency graph of the MRF X. Note by definition, we do not require the

dependency graph to be minimal, i.e. it might include redundant edges.

In the following, we focus on Euclidean spaces, i.e. (Xi,Fi) = (Rdi,B(Rdi)),

where B(Rdi) is the usual Borel ⇁-algebra on Rdi. Denote

x = (x1, . . . , xb) → Rd
, where xi → Rdi, d =

b∑

i=1

di. (2.1.5)

Denote ϖ = Law(X) as the probability distribution of the MRF X on Rd. Unless

mentioned otherwise, we always assume that ϖ is absolutely continuous with respect

to the Lebesgue measure φ on Rd. Without abuse of notations, still denote its
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density as ϖ(x), i.e.

ϖ(x) =
dϖ

dφ
(x) =

1

Z
exp (↓U(x)) , (2.1.6)

where U(x) is the potential function, and Z =
∫
Rd exp (↓U(x)) dx is the normalizing

constant, or the partition function. Distribution of the form (2.1.6) is usually called

Gibbs distribution.

Notice the conditional independence (2.1.4) can be written as

ϖ(xi, x[b]\Ni
|xNi\{i}) = ϖ(xi | xNi\{i}) · ϖ(x[b]\Ni

| xNi\{i}). (2.1.7)

Example 2.2 (1D Ginzburg-Landau). The Ginzburg-Landau (GL) model is a

widely used model in statistical physics [72]. A discrete 1D GL model describes

a chain of real-valued spins {xj}nj=1, where each xj → R interacts locally with its

neighbors. Its Gibbs distribution is given by

ϖ(x) =
1

Z
exp

(
n∑

j=1

V (xj) +
n↘1∑

j=1

W (xj, xj+1)


,

where V (x) = ϑ

4 (x
2 ↓m

2)2 is the double-well potential and W (x, y) = ϖ

2 (x↓ y)2 is

the nearest-neighbor interaction. Fix xj±1, we can factorize the distribution as

ϖ(xj, x[n]\Nj
| xj↘1, xj+1) △ exp (V (xj) +W (xj↘1, xj) +W (xj, xj+1))

· exp




∑

i:i ↔=j

V (xi) +
∑

i/↓{j,j↘1}

W (xi, xi+1)



 ,

from which we can directly verify the conditional independence.

2.1.4 Equivalent characterizations

Besides the conditional independence (2.1.4), the Markov property in MRF can be

characterized in several equivalent ways.

Theorem 2.1. Let G be an undirected graph. Suppose a probability measure ϖ has

nonnegative density ϖ(x) → C
2(Rd). The following statements are equivalent:

(1) X ∈ ϖ is a MRF on G, i.e. (2.1.4) holds.

(2) ↖i, j → [b], i ¬∈ j ̸ ∝2
ij
log ϖ(x) = 0.
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(3) log ϖ(x) admits a clique factorization, i.e. ⇑{uC}C↓C s.t.

↓ log ϖ(x) =
∑

C↓C
uC(xC), (2.1.8)

where C is a collection of cliques in G.

Before stating the proof, we make some remarks on the above theorem. The

second condition requires the Hessian of log ϖ(x) to vanish in blocks corresponding

to non-adjacent vertices, which is known to be equivalent to their conditional

independence (see Lemma 2 in [103]). The sparse Hessian condition is also the key

motivation for the localization method in sampling, as it introduces great sparse

dependencies in the score function s(x) := ∝ log ϖ(x). More discussions on its

implication and applications will be given in Chapter 4.

The equivalence between the Markov property and the existence of a clique

factorization is the renowned Hammersley-Cli!ord theorem [24]. Note the clique

factorization is not unique.

Proof of Theorem 2.1. (1) ̸ (2). The conditional independence implies

log ϖ(xi, x[b]\Ni
|xNi\{i}) = log ϖ(xi | xNi\{i}) + log ϖ(x[b]\Ni

| xNi\{i}).

So that

log ϖ(x) = log ϖ(xNi) + log ϖ(x[b]\{i})↓ log ϖ(xNi\{i}).

For any j ¬∈ i, we have

∝2
ij
log ϖ(x) = ∝i∝j log ϖ(xNi) +∝j∝i log ϖ(x[b]\{i})↓∝i∝j log ϖ(xNi\{i}) = 0.

(2) ̸ (3). We prove by induction on the number of vertices b, and note that

log ϖ(x) can be replaced by arbitrary function. The case b = 1 is trivial. Assume

it holds for b ↓ 1. For b vertices, the result is trivial if G is a complete graph.

Otherwise, there exists a vertex k s.t. |Nk| < b. By (2),

∝2
k,[b]\Nk

log ϖ(x) = 0 ̸ ∝k log ϖ(x) = f(xNk).

If ϖ → C
3, the function f(xNk) = ∝k log ϖ(x) also satisfies condition (2):

↖i, j → Nk, i ¬∈ j ̸ ∝2
ij
f(xNk) = ∝k(∝2

ij
log ϖ(x)) = 0.
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Since |Nk| < b, by the induction hypothesis, there exists a clique factorization

f(xNk) =
∑

C↓Ck

uC(xC),

where Ck = {C ∀Nk : C → C} for some clique collection C. Note

C+
k
:= {C ∅ {k} : C → Ck}

is also a clique collection in G (since j ∈ k for all j → Nk). So that

∝k log ϖ(x) =
∑

C↓Ck

uC(xC) ̸ log ϖ(x) =
∑

C+↓C+
k

u
+
C+(xC+) + g(x↘k). (2.1.9)

Here u
+
C+ is any antiderivative of uC w.r.t. xk. Now ↖i, j → [b], i /→ Nj,

0 = ∝2
ij
log ϖ(x) =

∑

C+↓C+
k

∝2
ij
u
+
C+(xC+) +∝2

ij
g(x↘k) = ∝2

ij
g(x↘k).

So that g also satisfies condition (2). By the induction hypothesis, g also admits

a clique factorization. So that (2.1.9) provides a clique factorization of log ϖ(x).

When ϖ /→ C
3, one can replace ∝k log ϖ(x) by finite di!erence ωhk log ϖ(x), or use

smooth mollifier; and the result still holds. This completes the induction.

(3) ̸ (1). For any i, note (2.1.8) implies

↓ log ϖ(x) =
∑

C↓C
uC(xC) =

∑

C↓C,i↓C
uC(xC) +

∑

C↓C,i/↓C

uC(xC).

The first term is only a function of xNi, since i → C → C ̸ C ↔ Ni. One can write

log ϖ(x) = log f(xNi) + log g(x[b]\{i}).

̸ ϖ(xi|xNi\{i}) △ f(xNi), ϖ(x[b]\{i}|xNi\{i}) △ g(x[b]\{i}).

So that (2.1.7) holds. This completes the proof.

2.2 Localized distribution

In this section, we first define the localized distribution and study its important

properties, among which two important properties, i.e. dimension-independent
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marginal approximation and exponential correlation decay, will be studied in detail

in the following chapter. Then we introduce its relaxations, the approximate locality

and ω-locality.

Definition 2.3. Localized distribution is a MRF on a localized graph G.

Besides the Markov property in MRF, the quantitative locality structure in

localized graph provides additional information in the localized distribution. For

instance, the slow growth of the neighborhood volume (2.1.3) implies that the

interaction between random variables at large distance must propogate through

a long path. This is the key intuition for the dimension-independent marginal

approximation and the exponential correlation decay.

2.2.1 Important properties

Reconstruction from marginals

The Markov property of localized distribution implies that the Hessian of its log

density is very sparse. Intuitively, this implies estimation of its density is much

easier than the general case. One way to characterize it is that the localized

distribution can be reconstructed from its low-dimensional marginals. Note in

general, one cannot uniquely reconstruct a distribution from its marginals, see

[113].

Theorem 2.2. A localized distribution ϖ can be reconstructed from its neighborhood

marginals {ϖNi}i↓[b].

The above theorem only uses the Markov property, so that it holds for any

MRF. But for localized distribution, the neighborhood marginals are guaranteed to

be low-dimensional. It suggests that learning a localized distribution is essentially

a low-dimensional problem. We will discuss this in detail in Chapter 4.

Proof of Theorem 2.2. By the Markov property, ϖ(xi|x↘i) = ϖ(xi|xNi\{i}). Here we

denote x↘i := x[b]\{i}. So that the conditionals {ϖ(xi|x↘i)}i↓[b] can be obtained from

marginals {ϖNi}i↓[b]. The above theorem then directly follows from Lemma 2.1.

Lemma 2.1. Let u : Rd ⇔ R be a di!erentiable function. Then up to a constant,

u ℜ⇔ {∝iu}i↓[b] is one-to-one. As a corollary, ϖ ℜ⇔ {ϖ(xi|x↘i)}i↓[b] is one-to-one.
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Proof. We prove by induction on b. When b = 1, u(x) =
∫
[0,x]∝1u(y)dy + const.

For b ↑ 2, Let v be any fixed antiderivative of ∝1u w.r.t. x1, i.e. ∝1v = ∝1u, then

v(x)↓ u(x) = u1(x2, x3, . . . , xd).

u1 is a function in Rd↘d1, so that by induction hypothesis, it is uniquely determined

(up to a constant) by

{∝ju1 = ∝jv ↓∝ju}j=2,...,d.

Since v is fixed, {∝iu}i↓[b] uniquely determines u1, and thus u (up to a constant).

This completes the induction.

For the corollary, suppose first ϖ has C1 density ϖ(x). Consider the function

log ϖ(x). Notice

∝i log ϖ(x) = ∝i log ϖ(xi|x↘i).

So that up to a constant {log ϖ(xi|x↘i)}i↓[b] uniquely determines log ϖ(x). But the

constant can be fixed by the normalization condition

∫
ϖ(x)dx = 1.

When ϖ /→ C
1, one can replace ∝i log ϖ(x) by finite di!erence ωhi log ϖ(x), or use

smooth mollifier. This completes the proof.

Dimension-independent marginal approximation

Theorem 2.2 indicates that to estimate a localized distribution, it su”ces to

estimate its low-dimensional marginals. Due to the local dependencies, the error of

approximating low-dimensional marginals is usually dimensional independent. It is

natural to consider the marginal version of existing distribution inequalities, such

as the renown Otto-Villani inequality [86]

W2(µ, ϱ) ⇓ Cµ


I(µ↘ϱ), (2.2.1)

where W2 is the 2-Wasserstein distance, and I(µ↘ϱ) = Eµ

∝ log µ

ε

2 denotes the

Fisher information. Our target is to establish a marginal version of the above

inequality, which should be dimension-independent.

We will discuss such marginal inequalities in detail in Section 3.1. The following

theorem is from [33], where a marginal Otto-Villani inequality is established using
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the ω-locality condition introduced in Section 3.1.3.

Theorem 2.3. Consider two distributions ϖ, ϖ⇒ → P1(Rd). Assume ϖ
⇒ is ω-localized

(see Definition 3.1), then the marginal W1 distance of ϖ, ϖ⇒ satisfies

max
i↓[b]

W1(ϖi, ϖ
⇒
i
) ⇓ ω ·max

j↓[b]
↘∝j log ϖ

⇒ ↓∝j log ϖ↘L1(ω) , (2.2.2)

where ϖi and ϖ
⇒
i
denote the marginals of ϖ and ϖ

⇒ on xi respectively.

The above inequality provides a dimension independent uniform control of the

marginal errors in terms of the di!erence in the score’s individual components.

This is not achieved if one simply uses the joint distribution error bounds, since

those are usually dimension dependent as in (2.2.1). In high-dimensional problems,

dimension-dependent bounds are usually meaningless for marginal error control.

We would like to comment on the importance of the marginal inequalities. In

high-dimensional problems, usually not all the components are of interest, and one

usually only needs the statistics of a few components [44, 64, 111, 46]. For instance,

in image deblurring problems [46], the uniform marginal bound ensures that the

error is evenly distributed across the image, rather than concentrating on certain

pixels and creating unwanted artifacts in the image.

Exponential correlation decay

One of the most important properties of localized distribution is the exponential

correlation decay, which states that the correlation between two random variables

decays exponentially with their graph distance. Detailed discussions on the expo-

nential correlation decay will be given in Section 3.2. Here we state a key result

(Theorem 3.5).

Theorem 2.4. Suppose ϖ has dependency graph G and is log-concave and smooth,

i.e. ⇑0 < m ⇓ M < ′ s.t. mI ▽ ↓∝2 log ϖ(x) ▽ MI. Then for any i, j and

Lipschitz functions f : Rdi ⇔ R and g : Rdj ⇔ R, it holds

|Covx≃ω (f(xi), g(xj))| ⇓
1

m

(
1↓ m

M

)dG(i,j)
|f |Lip |g|Lip . (2.2.3)

We comment the above theorem does not assumes locality of the graph G. The

exponential correlation decay is merely a consequence of the Markov property.
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2.2.2 Approximate locality

In many applications, the locality structure is not exact, but only approximately

holds. It is therefore important to consider relaxations of the locality condition.

The first natural relaxation is based on the sparse Hessian condition (see (2) in

Theorem 2.1). Motivated by the ubiquitous exponential decay phenomenon, we

introduce in [56] the following approximate locality condition.

Definition 2.4. A distribution ϖ is called approximately localized w.r.t. G, if there

exist dimensional independent constants cω, Cω > 0 such that

∝2
ij
log ϖ


⇓ ⇓ Cω exp (↓cωdG(i, j)) . (2.2.4)

Here ↘·↘⇓ denotes the L
⇓-norm.

Here, by dimensional independence we mean cω, Cω do not scale with the problem

dimension for a certain class of target distributions.

Note the score function of approximate localized distributions can be e”ciently

approximated by a low-dimensional function

sj(x) = ∝j log ϖ(x) ≈ ŝj(xN r
j
).

Here r is the localization radius and N r

j
is the r-neighborhood (2.1.2). Note by

(2.2.4), the approximation error decays exponentially with the radius r, while the

dimension of ŝj only grows polynomially with r if G is localized.

Another relaxation is the ω-locality condition [33], which is inspired by the

Stein’s method. It provides a quantitative characterization of the locality structure.

It is a more general condition, but is di”cult to directly verify in practice. We will

discuss it in detail in Section 3.1.3.

Finally, we mention a possible relaxation of the localized distribution, which is

based on the exponential correlation decay (see Theorem 3.5). That is, we require

that for any i, j and 1-Lipschitz functions f : Rdi ⇔ R and g : Rdj ⇔ R, it holds

|Covx≃ω (f(xi), g(xj))| ⇓ Cω exp (↓cωdG(i, j)) .

Here Cω, cω are dimensional independent constants. Such relaxation captures an

important feature of locality structure, is easier to verify in practice, and also

applies to a wider range of distributions, including empirical distributions.
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Chapter 3

Marginal Stein’s Method

In this chapter, we introduce a novelmarginal Stein’s method that relates the locality

structure to quantitative properties of high dimensional distributions. This method

originates from the classical Stein’s method [104], a powerful tool for quantifying

distances between probability distributions. It considers a Stein equation associated

with a test function, and provides a way to bound the test error via the solution of

the equation. To apply Stein’s method to derive bounds on marginal distributions,

we introduce the marginal Stein equation, where the test function only depends on

certain marginal variables. By a careful gradient estimate of the marginal Stein

equation, we derive a marginal transport inequality in Section 3.1 that provides

dimension independent bounds on the marginal distance. Some generalizations of

this marginal inequality are also discussed. This method can go beyond bounds on

marginal distributions, and it can be used to derive bounds on certain integrals

against localized distributions. In Section 3.2, we establish the exponential decay

of correlation between di!erent components of localized distributions using the

marginal Stein’s method. Section 3.3 introduces the key technical analysis in

Marginal Stein’s method, i.e. the gradient estimate of the marginal Stein equation,

which crucially quantifies the locality structure. Section 3.4 interprets the marginal

Stein’s method from a Langevin semigroup perspective, which presents its own

theoretical interest.
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3.1 Marginal transport inequality

3.1.1 Stein’s method

Stein’s method is a useful approach for quantifying distances between probability

distributions. First developed in [104] for Gaussian approximation, it has been

extended to various distributions, including Poisson [17], binomial [105], di!usion

process [4], and high dimensional settings [96, 23]. We refer to Stein’s monograph

[105] for a comprehensive review. Here we focus on Stein’s method for general

continuous distributions.

Consider two continuous distributions ϖ, ϖ⇒ → P1(Rd). Depending on the choice

of the probability distances d(ϖ, ϖ⇒), we take test functions ς from certain function

class F . For instance,

• F = {f : |f |Lip ⇓ 1}, then d(ϖ, ϖ⇒) is the 1-Wasserstein distance W1(ϖ, ϖ⇒).

• F = {f : ↘f↘⇓ ⇓ 1
2}, then d(ϖ, ϖ⇒) is the TV distance TV(ϖ, ϖ⇒).

• F = {f : ↘f↘H ⇓ 1}, where H is a reproducing kernel Hilbert space (RKHS),

then d(ϖ, ϖ⇒) is the maximum mean discrepancy MMD(ϖ, ϖ⇒).

Fix a test function ς → F , consider the Stein equation

Lωuϱ := %uϱ +∝ log ϖ ·∝uϱ = ς↓ Eω[ς]. (3.1.1)

Here Lω is called the Stein operator, which in this case is exactly the generator of

the Langevin dynamics [83, 3] associated with ϖ. Suppose that for certain ϖ and

function class F , one can derive the gradient estimate

sup
ϱ↓F

↘∝uϱ↘⇓ ⇓ Cω.

Here ↘·↘⇓ denotes the L
⇓ norm. Then it holds that

sup
ϱ↓F

[Eω→[ς]↓ Eω[ς]] = sup
ϱ↓F

Eω→[ς↓ Eω[ς]] = sup
ϱ↓F

Eω→[Lωuϱ]

= sup
ϱ↓F

Eω→[(∝ log ϖ ↓∝ log ϖ⇒) ·∝uϱ]

⇓ sup
ϱ↓F

↘∝ log ϖ ↓∝ log ϖ⇒↘L1(ω→)↘∝uϱ↘⇓

⇓ Cω↘∝ log ϖ ↓∝ log ϖ⇒↘L1(ω→).
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Here the second line follows from the integration by parts (or Stein’s lemma [4])

Eω→[Lωuϱ] =

∫
(%uϱ(x) +∝ log ϖ(x) ·∝uϱ(x)) ϖ

⇒(x)dx

=

∫
(↓∝uϱ(x) ·∝ϖ

⇒(x) +∝ log ϖ(x) ·∝uϱ(x) ϖ
⇒(x)) dx

=

∫
(∝ log ϖ(x)↓∝ log ϖ⇒(x)) ·∝uϱ(x) ϖ

⇒(x)dx.

(3.1.2)

We can see from above that the key step is to derive the gradient estimate of

Stein equation for specific distribution ϖ and function class F . The result then

follows from the standard argument of Stein’s method.

3.1.2 Marginal Stein equation

To derive bounds on the marginal distance, consider test function ς that only

depends on the i-th component xi, i.e.

ς(x) = ςi(xi), ςi → Fi.

Notice the obvious relation

Eω
→

i
[ςi]↓ Eωi[ςi] = Eω→[ς]↓ Eω[ς].

The right hand side can be controlled using the Stein’s method. Then it su”ces to

derive the gradient estimate of the marginal Stein equation

Lωuϱ(x) := %uϱ(x) +∝ log ϖ(x) ·∝uϱ(x) = ςi(xi)↓ Eω[ςi(xi)]. (3.1.3)

Note the left hand side is generally a function of x, but the right hand side is only a

function of xi. Well-posedness of (3.1.3) requires certain conditions. In this thesis,

we focus the following scenario:

• ϖ satisfies the Poincaré inequality [3], i.e. there exists a constant CPI > 0 s.t.

↖u → H
1(ϖ), Covω(u) ⇓ CPIEω[↘∝u↘2]. (3.1.4)

• ςi is a Lipschitz function, i.e., |ςi|Lip < ′.
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Under these conditions, we can show by Lax-Milgram theorem that the marginal

Stein equation (3.1.3) has a unique solution uϱ in the space

H
1
0 (ϖ) := {u → H

1(ϖ) : Eω[u] = 0}. (3.1.5)

Under this setting, we can derive theW1 bounds on the marginal distance. Extension

to other distances is left for future work.

3.1.3 ω-localized distributions

Deriving the gradient estimate of the marginal Stein equation (3.1.3) is non-trivial.

For generality, we propose in [33] to directly use the gradient estimate condition to

identify a class of distributions that satisfy the marginal transport inequality.

Definition 3.1. A distribution ϖ → P1(Rd) is called ω-localized for some constant

ω > 0, independent of d, if for any i → [b] and 1-Lipschitz function ςi : Rdi ⇔ R,
the solution u(x) to the marginal Stein equation

%u(x) +∝ log ϖ(x) ·∝u(x) = ςi(xi)↓ Eω[ςi(xi)],

satisfies the gradient estimate

↘∝u↘⇓,1 :=
b∑

j=1

↘∝ju↘L↑ ⇓ ω. (3.1.6)

We will show in Theorem 3.3 that the ω-locality condition directly implies the

marginal transport inequality. From the proof of Theorem 3.3, we can see that

∝ju(x) quantifies how modifications of ∝j log ϖ(x) a!ect the marginal ϖi.

We keep the technical definition here for the sake of generality. In the following,

we consider two classes of distributions, i.e. the localized distributions and the

distributions with certain diagonal dominance condition, and claim that they are

ω-localized with ω independent of d.

Localized distributions are ω-localized

Theorem 3.1. Let G be a (s, ϱ)-local graph. Suppose ϖ → P(Rd) is localized on G,

and satisfies for some 0 < m ⇓ M < ′,

↖x → Rd
, mI ▽ ↓∝2 log ϖ(x) ▽ MI.
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Then ϖ is ω-localized with ω = sε!ςω

m
where κ = M

m
.

Proofs are delayed to Section 3.3.3.

Remark 3.1. The condition number κ plays an important role in localization:

• κ is known to be crucial to preserve the band structure in matrix inversion

[38, 9]. In probability language, consider a Gaussian distribution N(0, C),

then a moderate κ ensures the equivalence of local correlation (C is nearly

banded) and conditional dependencies (C↘1 is nearly banded).

• We comment that the condition number κ of typical localized distributions

is independent of dimension d. This is in contrast to the distributions for

fixed-domain models with finer resolution. The key di!erence is di!erent

types of high-dimensionality. An illustrative example is the 1d lattice model:

ϖ(x) △ exp

(
1

2
x
T
Ax↓ ▷

2
↘x↘2

)
,

where x → Rd, and x
T
Ax comes from discretized Laplacian.

1. Fixed-domain type. Fix domain [0, 1] and take xk = kh and h = (d+1)↘1.

Then

↓∝2 log ϖ(x) = ↓A+ ▷I =
1

h2





2 ↓1 0 · · · 0

↓1 2 ↓1 · · · 0

0 ↓1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2





+ ▷I.

The condition number is thus

κ =
▷ + 4h↘2 sin2 dω

2(d+1)

▷ + 4h↘2 sin2 ω

2(d+1)

≈
sin2 dω

2(d+1)

sin2 ω

2(d+1)

ℑ d
2
.

Examples include using a finer discretization of a PDE problem.

2. Extended-domain (locality) type. Fix mesh size h = h0, and consider an

extended domain [0, (d+ 1)/h0]. Take xk = kh0, then ↓∝2 log ϖ(x) has

the same form as above with h = h0. Therefore,

κ =
▷ + 4h↘2

0 sin2 dω

2(d+1)

▷ + 4h↘2
0 sin2 ω

2(d+1)

≈ ▷ + 4h↘2
0

▷
ℑ 1.

31



Examples include spatial extension of a physical system.

In summary, the high-dimensionality in distributions of fixed-domain type

comes from refined discretization; while for locality structure, it comes from

an extended domain. Since interaction is still local in the extended system,

the condition number should be dimension independent.

Diagonal dominant distributions are ω-localized

Another condition that implies ω-locality is a diagonal dominance condition studied

in [46], which is motivated by an image deblurring problem. In this case, the

dependency graph of the distribution is not necessarily local. The locality is

guaranteed by the diagonal dominance, which can be interpreted as that any block

xi is mostly correlated with itself rather than with other blocks xj.

Theorem 3.2. Consider ϖ → P1(Rd). Suppose H(x) := ↓∝2 log ϖ(x) is c-uniformly

diagonal block dominant, i.e. there exists a matrix M → Rb⇐b
→0 s.t. ↖i, j → [b], i ¬= j,

Hii(x) ⊤ MiiIdi, ↘Hij(x)↘ ⇓ Mij;
∑

j:j ↔=i

Mij + c ⇓ Mii,

where Hij(x) denotes the (i, j)-th subblock of H(x). Then ϖ is c
↘1-localized.

Proofs are delayed to Section 3.3.4.

Remark 3.2. (1) The diagonal dominance condition takes a similar form as the

Dobrushin condition [39], where it assumes that the sum of the influence coe”cients

↼ij := sup
x↓i,y↓i:x[b]\{i,j}=y[b]\{i,j}

TV

ϖi|↘i(·|x↘i), ϖi|↘i(·|y↘i)


.

is bounded by a constant c < 1, i.e. maxi
∑

j:j ↔=i
↼ij ⇓ c. Although Mij and ↼ij

have similar interpretations, i.e. they measure the correlation between xi and xj,

it is hard to find direct connection between them. The motivation for the two

conditions is di!erent: the Dobrushin condition is to ensure the uniqueness of Gibbs

measure, while the diagonal dominance condition is to ensure the distribution is

e!ectively localized. We also point out that the Dobrushin condition in general is

hard to verify, while the diagonal dominance condition is easier to check in practice.

(2) The conditions above imply that ϖ is log-concave. Denote M
⇒ → Rb⇐b

s.t. M ⇒
ij

:= 2Mii1i=j ↓ Mij, then M
⇒ is c-diagonal dominant. Gerŝgorin discs
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theorem [62] implies that the smallest eigenvalue of M ⇒ is lower bounded by c, and

thus

u
T
H(x)u =

∑

i,j

u
T
i
Hij(x)uj ↑

∑

i

Mii ↘ui↘2 ↓
∑

i ↔=j

Mij ↘ui↘ ↘uj↘

=
∑

i,j

M
⇒
ij
↘ui↘ ↘uj↘ ↑ c

∑

i

↘ui↘2 = c ↘u↘2 .

3.1.4 Marginal transport inequality

Theorem 3.3. Consider two distributions ϖ, ϖ⇒ → P1(Rd). Assume ϖ
⇒ is ω-localized,

then the marginal W1 distance of ϖ, ϖ⇒ satisfies

max
i↓[b]

W1(ϖi, ϖ
⇒
i
) ⇓ ω ·max

j↓[b]
↘∝j log ϖ

⇒ ↓∝j log ϖ↘L1(ω) , (3.1.7)

where ϖi and ϖ
⇒
i
denote the marginals of ϖ and ϖ

⇒ on xi respectively.

Proof. By Kantorovich duality [113],

W1(ϖi, ϖ
⇒
i
) = sup

ϱi↓Lip1

[
Eωi[ςi]↓ Eω

→

i
[ςi]

]
.

Let u(x) solve Stein equation

Lω→u(x) = ςi(xi)↓ Eω→[ςi(xi)].

Since ϖ
⇒ is ω-localized, we have

↘∝u↘⇓,1 ⇓ ω.

Denote ς(x) = ςi(xi), then by Stein’s Lemma (3.1.2), we have

Eωi[ςi]↓ Eω
→

i
[ςi] = Eω[ς]↓ Eω→[ς]

= Eω[ς↓ Eω→[ς]] = Eω[Lω→u]

= Eω[(∝ log ϖ⇒ ↓∝ log ϖ) ·∝u]

=
b∑

j=1

Eω[(∝j log ϖ
⇒ ↓∝j log ϖ) ·∝ju].

(3.1.8)
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Therefore, we obtain

max
i

W1(ϖi, ϖ
⇒
i
) ⇓ max

i

max
ϱi↓Lip1

[
Eωi[ςi]↓ Eω

→

i
[ςi]

]
.

⇓ max
i

max
ϱi↓Lip1

b∑

j=1

↘∝ju↘⇓ ·max
j

↘∝j log ϖ
⇒ ↓∝j log ϖ↘L1(ω)

= ω ·max
j

↘∝j log ϖ
⇒ ↓∝j log ϖ↘L1(ω) .

This completes the proof.

Remark 3.3. To control the marginal error, one can directly apply Otto-Villani

inequality [86] on the marginals and obtain

W2(ϖi, ϖ
⇒
i
) ⇓ Cωi


Eωi


↘∝ log ϖi ↓∝ log ϖ⇒

i
↘2

.

The main issue of this approach is that we often only have access to ϖ and ϖ
⇒ but

not to their marginals. Evaluating the marginals is often computationally very

challenging as it involves integrating out the other components. This makes the

inequality less useful in practice.

3.1.5 Generalizations of marginal transport inequality

Various generalizations of the marginal transport inequality are possible for appli-

cations in di!erent scenarios. They can be similarly derived using the marginal

Stein’s method. We introduce two examples here.

Marginal error of a specific block

The marginal transport inequality only provides a ϑ⇓-bound over the marginal

blocks, which is due to that we use a ω-locality condition that mixes all blocks. For

localized distributions, the proof of Theorem 3.1 already reveals the exponential

decay of ↘∝ju↘ in terms of dG(i, j) (cf. (3.3.10)). A direct consequence is the

following marginal transport inequality for a specific block.

Proposition 3.1. Under the conditions in Theorem 3.1, it holds that

W1(ϖi, ϖ
⇒
i
) ⇓ 1

m

∑

j↓[b]

(
1↓ m

M

)dG(i,j)
↘∝j log ϖ

⇒ ↓∝j log ϖ↘L1(ω) .
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This is a special case of Proposition 3.2. The above proposition says that the

approximation error of a certain marginal of localized distributions mainly depends

on the error of its neighboring components of the score function. This provides a

refined control compared to Theorem 3.3.

Marginal error of multiple blocks

The marginal transport inequality only considers the marginal distance of ϖ and ϖ
⇒

on one block xi. It is natural to extend this result to the case of multiple blocks.

Theorem 3.4. Consider two distributions ϖ, ϖ
⇒ → P1(Rd). Assume ϖ

⇒ satisfies

any one of the conditions in Theorem 3.1 or Theorem 3.2, then for any index set

I ↔ [b], the W1 distance of ϖ, ϖ⇒ on the marginal xI satisfies

W1(ϖI , ϖ
⇒
I
) ⇓ ω|I| ·max

j↓[b]
↘∝j log ϖ

⇒ ↓∝j log ϖ↘L1(ω) . (3.1.9)

Here ω can be taken as the same as in Theorem 3.1 or Theorem 3.2.

Proofs are delayed to Section 3.5.1. Theorem 3.4 provides further control on the

correlation between di!erent blocks in ϖ
⇒, which cannot be directly derived from

Theorem 3.3. When ϖ and ϖ
⇒ are both Gaussians, Theorem 3.3 only guarantees

that the diagonal blocks of the covariance matrix of ϖ⇒ are close to those of ϖ, while

Theorem 3.4 further guarantees that the o!-diagonal blocks are also close.

3.2 Exponential correlation decay

In localized systems, interactions between di!erent sites are short ranged, and any

influence from a distant site must propagate through the intermediate space. This

implies that perturbations at one site a!ect distant sites only weakly, hence the

correlation decays. In this section, we will quantify such decay and show that it is

exponential in the distance in the low temperature or weakly coupled regime. Such

exponential decay is a ubiquitous phenomenon reported in probability [71, 15],

statistical physics [14, 41] and quantum mechanics [7, 53]. We will use the marginal

Stein’s method to derive the correlation exponential decay, where the gradient

of the solution to the marginal Stein equation precisely encodes the correlation

structure. We will also discuss a generalized version of the exponential decay result.
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3.2.1 Exponential correlation decay

Theorem 3.5. Suppose ϖ has dependency graph G and is log-concave and smooth,

i.e. ⇑0 < m ⇓ M < ′ s.t. mI ▽ ↓∝2 log ϖ(x) ▽ MI. Then for any i, j and

Lipschitz functions f : Rdi ⇔ R and g : Rdj ⇔ R, it holds

|Covω (f(xi), g(xj))| ⇓
1

m

(
1↓ m

M

)dG(i,j)
|f |Lip |g|Lip . (3.2.1)

Note the above theorem does not assume the sparsity or locality of the graph. It

is merely a consequence of the Markov property. The proof is based on the marginal

Stein’s method, and a key result (Theorem 3.6) on the gradient estimate of the

marginal Stein equation, which quantifies the exponential decay of the correlation

in localized systems.

Proof of Theorem 3.5. By subtracting the mean, we assume without loss of gener-

ality that Eω[f(xi)] = Eω[g(xj)] = 0. Then

Covω (f(xi), g(xj)) =

∫
f(xi)g(xj)ϖ(x)dx.

Consider the marginal Stein equation

Lωuf (x) = f(xi).

By Theorem 3.6, the following gradient estimate of uf holds:

↘∝juf↘⇓ ⇓ 1

m

(
1↓ m

M

)dG(i,j)
|f |Lip .

By integration by parts, it holds that

∫
f(xi)g(xj)ϖ(x)dx

=

∫
(%uf (x) +∝ log ϖ(x) ·∝uf (x)) g(xj)ϖ(x)dx

= ↓
∫

∝uf (x) ·∝xg(xj)ϖ(x)dx

↓
∫

∝uf (x) ·∝ϖ(x)g(xj)dx+

∫
∝uf (x) ·∝ log ϖ(x)g(xj)ϖ(x)dx

= ↓
∫

∝juf (x) ·∝g(xj)ϖ(x)dx.
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Here we use ∝xig(xj) = 0 if i ¬= j. Combined, we obtain

|Covω (f(xi), g(xj)) | =

∫

∝juf (x) ·∝g(xj)ϖ(x)dx



⇓
∫

↘∝juf (x)↘ ↘∝g(xj)↘ ϖ(x)dx

⇓ 1

m

(
1↓ m

M

)dG(i,j)
|f |Lip |g|Lip .

This completes the proof.

Theorem 3.6. Suppose ϖ has dependency graph G and is log-concave and smooth,

i.e. ⇑0 < m ⇓ M < ′ s.t. mI ▽ ↓∝2 log ϖ(x) ▽ MI. For any i and Lipschitz

function f : Rdi ⇔ R, let u(x) solve the marginal Stein equation

Lωu(x) = f(xi)↓ Eω[f(xi)].

The following gradient estimate holds:

↘∝ju↘⇓ ⇓ 1

m

(
1↓ m

M

)dG(i,j)
|f |Lip . (3.2.2)

Proof. The proof is based on a refined analysis of that of Theorem 3.1. By

Lemma 3.1, the gradient of the solution to the marginal Stein equation is given by

∝ju(x) = ↓
∫ ⇓

0
E
[
∝xjX

x

t,i
·∝f(Xx

t,i
)
]
dt.

where X
x

t
is the path solution of the Langevin dynamics

dXx

t
= ∝ log ϖ(Xx

t
)dt+

⊥
2dWt, X

x

0 = x.

Since f is Lipschitz, we obtain

↘∝ju(x)↘ ⇓ |f |Lip
∫ ⇓

0
E↘∝xjX

x

t,i
↘dt.

As in the proof of Theorem 3.1, (3.3.10) holds:

↘∝xjX
x

t
↘ ⇓ e↘Mt

⇓∑

r=dG(i,j)

t
r(M ↓m)r

r!
.
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Therefore,

↘∝ju(x)↘ ⇓ |f |Lip
∫ ⇓

0
E↘∝xjX

x

t,i
↘dt

⇓ |f |Lip
∫ ⇓

0
e↘Mt

⇓∑

r=dG(i,j)

t
r(M ↓m)r

r!
dt

= |f |Lip
1

M

⇓∑

r=dG(i,j)

(
1↓ m

M

)r

=
1

m

(
1↓ m

M

)dG(i,j)
|f |Lip .

The conclusion follows by noting the above bound holds for all x.

Recall in the proof of Theorem 3.3, ↘∝ju↘ controls how much the marginal

distribution ϖj changes when we perturb the score ∝i log ϖ. The above theorem

directly implies a refined version of Theorem 3.3:

Proposition 3.2. Consider two distributions ϖ, ϖ
⇒ → P1(Rd). Suppose ϖ has

dependency graph G and is log-concave and smooth, i.e. ⇑0 < m ⇓ M < ′
s.t. mI ▽ ↓∝2 log ϖ(x) ▽ MI. Then it holds that

W1(ϖi, ϖ
⇒
i
) ⇓ 1

m

∑

j↓[b]

(
1↓ m

M

)dG(i,j)
↘∝j log ϖ

⇒ ↓∝j log ϖ↘L1(ω) . (3.2.3)

Proof. The result directly follows from (3.1.8) and Theorem 3.6.

3.2.2 Generalization

In Theorem 3.5, the functions f and g are assumed to only depend on xi and xj. A

direct generalization is possible by allowing f and g to depend on all variables, but

with ‘concentration’ on xi and xj. These observables arise in practical problems

such as spatial statistics, where they are often expressed as local functionals of the

entire field. For these observables, we prove

Theorem 3.7. Suppose ϖ is localized on a (s, ϱ)-local graph G, and is log-concave

and smooth, i.e. ⇑0 < m ⇓ M < ′ s.t. mI ▽ ↓∝2 log ϖ(x) ▽ MI. Let i, j → [b],

and suppose f, g : Rd ⇔ R satisfy xz

↘∝kf↘⇓ ⇓ Lf exp(↓cfdG(i, k)), ↘∝kg↘⇓ ⇓ Lg exp(↓cgdG(j, k)).
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Then it holds that

|Covω (f(x), g(x))| ⇓ LfLg⇀3(ε+1)(dG(i, j)) exp(↓cdG(i, j)). (3.2.4)

Here ⇀3(ε+1) → P3(ε+1) is a polynomial depending on s, ϱ and c, and c is defined as

c = min

cf , cg,↓ log

(
1↓ m

M

)}
,

Proof. By subtracting the mean, we assume without loss of generality that Eω[f ] =

Eω[g] = 0. Then

Covω (f(x), g(x)) =

∫
f(x)g(x)ϖ(x)dx.

Let u solve Stein equation Lωu = f . By Lemma 3.1, the solution is given by

u(x) = ↓
∫ ⇓

0
E[f(Xx

t
)]dt,

By (3.3.10) and the assumption on f , we have

↘∝lu(x)↘ ⇓
∑

k↓[b]

∫ ⇓

0
E
[∝xlX

x

t,k

 ↘∝kf(X
x

t
)↘
]
dt

⇓
∑

k↓[b]

∫ ⇓

0
e↘Mt

⇓∑

r=dG(k,l)

t
r(M ↓m)r

r!
· Lf exp(↓cfdG(i, k))dt

=
Lf

M

∑

k↓[b]

⇓∑

r=dG(k,l)

(
1↓ m

M

)r

· exp(↓cfdG(i, k))

=
Lf

m

∑

k↓[b]

(
1↓ m

M

)dG(k,l)
· exp(↓cfdG(i, k)).
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Therefore, as in the proof of Theorem 3.5, we have


∫

f(x)g(x)ϖ(x)dx


=



∑

l↓[b]

∫
∝lu(x) ·∝lg(x)ϖ(x)dx



⇓ LfLg

m

∑

k,l↓[b]

(
1↓ m

M

)dG(k,l)
· exp(↓cfdG(i, k)) exp(↓cgdG(j, l))

⇓ LfLg

m
exp(↓cdG(i, j))

⇓∑

r=0

exp(↓cr)

·#{(k, l) → [b]2 | dG(i, k) + dG(k, l) + dG(j, l) = dG(i, j) + r}.

Here we denote

c = min

cf , cg,↓ log

(
1↓ m

M

)}
.

Since G is (s, ϱ)-localized, we have

#{(k, l) → [b]2 : dG(i, k) + dG(k, l) + dG(j, l) = dG(i, j) + r}

⇓
∑

d1+d2+d2=dG(i,j)+r

(1 + sd
ε

1) (1 + sd
ε

2) (1 + sd
ε

3)

⇓
(
dG(i, j) + r + 2

2

)
(1 + s (dG(i, j) + r)ε)

3

⇓ Cs
3 (dG(i, j) + r)3ε+2

,

for some universal constant C > 0. Note

⇓∑

r=0

exp(↓cr) (dG(i, j) + r)3ε+2

⇓
⇓∑

r=0

exp(↓cr)23ε+2

(dG(i, j))

3ε+2 + r
3ε+2



⇓ 23ε+2
(
c
↘1(dG(i, j))

3ε+2 + ecc↘3(ε+1)&(3(ϱ + 1))
)
.
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Here we use

⇓∑

r=0

exp(↓cr)r3ε+2 ⇓
∫ ⇓

0
exp(↓cx)(x+ 1)3ε+2dx

= ec
∫ ⇓

1
exp(↓cx)x3ε+2dx

⇓ ecc↘3(ε+1)&(3(ϱ + 1)).

Therefore, we obtain


∫

f(x)g(x)ϖ(x)dx

 ⇓ LfLg⇀3(ε+1)(dG(i, j)) exp(↓cdG(i, j)).

Here we denote

⇀3(ε+1)(x) = C
23ε+2

m
s
3
(
c
↘1
x
3ε+2 + ecc↘3(ε+1)&(3(ϱ + 1))

)
.

This completes the proof.

3.3 Gradient estimate of marginal Stein equation

We now prove the gradient estimate of the marginal Stein equation (3.1.3). The

idea is to use the explicit solution (3.3.1) by Dynkin’s formula, and represent its

gradient as an expectation of the derivate of the path solution of the Langevin

dynamics (3.3.2). The main technical part is to control the di!usion speed of

the Langevin dynamics using the Dyson series [43]. The idea originates from the

polynomial approximation of the inverse of a banded matrix in [38, 7, 6], and we

generalize it to the case of time-dependent banded matrix. We mention that [52]

derive a decay result for this case (termed time-ordered exponential), but their

bound depends on the total dimension, which arises from a combinatorial term in

the path-integral formula. Our result avoids the dimension dependence by using

Dyson series, see [33] for more discussions. We also document our earlier proof

using PDE analysis approach in [46] for the diagonal dominant case.

3.3.1 Explicit solution of Stein equation

Lemma 3.1. Suppose ϖ → P(Rd) is strongly log-concave. For any i → [b] and

1-Lipschitz function ςi : Rdi ⇔ R, the solution of the marginal Stein equation
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(3.1.3) is given by (up to a constant)

u(x) = ↓
∫ ⇓

0
E
[
ςi(X

x

t,i
)↓ Ex→≃ω[ςi(x

⇒
i
)]
]
dt. (3.3.1)

where X
x

t
is the path solution of the overdamped Langevin dynamics

dXx

t
= ∝ log ϖ(Xx

t
)dt+

⊥
2dWt, X

x

0 = x. (3.3.2)

As a corollary, the gradient estimate holds

↘∝ju(x)↘ ⇓
∫ ⇓

0
E↘∝xjX

x

t,i
↘dt. (3.3.3)

Remark 3.4. When the Stein operator Lω is a generator of a process, it is known

that the according Stein equation admits explicit solutions (3.3.1) (see [4]).

Proof. Let Xx

t
solves the Langevin dynamics (3.3.2). By Dynkin’s formula [83],

E[u(Xx

T
)]↓ u(x) = E

∫
T

0
(∝ log ϖ(Xx

t
) ·∝u(Xx

t
) +%u(Xx

t
)) dt

=

∫
T

0
E
[
ςi(X

x

t,i
)↓ Ex

→

i≃ω[ςi(x
⇒
i
)]
]
dt.

(3.3.4)

Since ϖ is strongly log-concave, it is well-known that Law(Xx

t
) converges to ϖ

exponentially [3]. It implies that the limit T ⇔ ′ exists for both sides in (3.3.4),

and the limit is

∫
u(x)ϖ(x)dx↓ u(x) =

∫ ⇓

0
E
[
ςi(X

x

t,i
)↓ Ex

→

i≃ω[ςi(x
⇒
i
)]
]
dt.

This gives (3.3.1) up to a constant. Taking derivative w.r.t xj gives

∝ju(x) = ↓
∫ ⇓

0
E
[
∝xjX

x

t,i
·∝ςi(X

x

t,i
)
]
dt.

Note it is valid due to the exponential decay of ∝xjX
x

t,i
. Since ςi is 1-Lipschitz,

∝xju(x)
 ⇓

∫ ⇓

0
E
[
↘∝xjX

x

t,i
↘
∝ςi(X

x

t,i
)
] dt ⇓

∫ ⇓

0
E↘∝xjX

x

t,i
↘dt.

This completes the proof.
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3.3.2 A key lemma

We now prove the following key technical lemma, which essentially controls the

di!usion speed in graphs. The proof is based on the polynomial approximation

trick in [38] and Dyson series [43].

Lemma 3.2. Let Ht → Rd⇐d be a time-dependent positive definite matrix satisfying:

1. Ht has dependency graph G, i.e. Ht(i, j) = 0 if dG(i, j) > 1.

2. ⇑M > 0 s.t. ↖t ↑ 0, 0 ▽ Ht ▽ MI.

Here I → Rd⇐d denotes the identity matrix. Consider the matrix ODE

d

dt
Gt = ↓HtGt, G0 = I. (3.3.5)

Then for any t ↑ 0, it holds that

↘Gt(i, j)↘ ⇓ exp(↓tM)
⇓∑

k=dG(i,j)

t
k
M

k

k!
. (3.3.6)

Proof. I. Scaling. First note by a scaling argument, it su”ces to consider t = 1.

Consider t = t0. Let Gt solves (3.3.5), then Gt0s solves

d

ds
Gt0s = ↓t0Ht0sGt0s, G0 = I.

If the theorem holds for t = 1, then we obtain that at s = 1 (note ↘t0Ht0s↘ ⇓ Mt0),

↘Gt0(i, j)↘ ⇓ exp(↓Mt0)
⇓∑

k=dG(i,j)

M
k
t
k

0

k!
.

II. Dyson series solution. By variation of constants formula, we have

Gt = I ↓
∫

t

0
HsGsds.
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Applying this identity recursively, we obtain

Gt = I ↓
∫

t

0
Hs

(
I ↓

∫
s

0
HuGudu

)
ds

= I ↓
∫

t

0
Hsds+

∫
t

0

∫
s

0
HsHuGududs = · · ·

= I +
N↘1∑

n=1

(↓1)n
∫

[0,t]n
Htn · · ·Ht11t1⇔t2⇔···⇔tndt1 · · · dtn

+ (↓1)N
∫

[0,t]N
HtN · · ·Ht1Gt11t1⇔t2⇔···⇔tNdt1 · · · dtN .

For simplicity, denote

X0(t) = I, Xn(t) :=
n!

tn

∫

[0,t]n
Htn · · ·Ht11t1⇔t2⇔···⇔tndt1 · · · dtn, n ↑ 1. (3.3.7)

RN (t) =

∫

[0,t]N
HtN · · ·Ht1Gt11t1⇔t2⇔···⇔tNdt1 · · · dtN .

Notice Xn(t) is the average of ‘Hn’ in [0, t]. Then

Gt =
N↘1∑

n=0

(↓1)n
t
n

n!
Xn(t) +RN (t).

Now we prove that limN↖⇓RN (t) = 0. First notice ↘Gt↘2 ⇓ 1, since

d

dt
G

T
t
Gt = ↓2GT

t
HtGt ̸ G

T
t
Gt = I ↓ 2

∫
t

0
G

T
s
HsGsds ▽ I.

So that as N ⇔ ′,

↘RN (t)↘2 ⇓
∫

[0,t]N
↘HtN↘2 · · · ↘Ht1↘2 ↘Gt1↘2 1t1⇔t2⇔···⇔tNdt1 · · · dtn

⇓ M
N

∫

[0,t]N
1t1⇔t2⇔···⇔tNdt1 · · · dtN =

M
N
t
N

N !
⇔ 0.

This proves that the Dyson series converges, and

Gt =
⇓∑

n=0

(↓1)n
t
n

n!
Xn(t).
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III. Representation of polynomials. Denote the matrix process space

X = span{Xn(t), n ↑ 0} =
 n∑

k=0

akXn(t) : ak → C
}
.

We define the representation of any polynomial P in X as

P [X](t) =
n∑

k=0

akXk(t), if P (x) =
n∑

k=0

akx
k
.

Note that it can be extended from polynomials to any analytic functions. In

Lemma 3.3, we show that the representation has an equivalent definition: if

P (x) = an

∏
n

k=1(x↓ xk), then

P [X](t) =
an

tn

∑

φ↓Sn

∫
t

0
(Ht1 ↓ xφ1I)

∫
t1

0
(Ht2 ↓ xφ2I) · · ·

· · ·
∫

tn↓1

0
(Htn ↓ xφnI)dtn · · · dt2dt1.

(3.3.8)

Here Sn is the permutation group of degree n.

IV. Banded matrix approximation. By Taylor expansion,

exp(↓x) = exp(↓M)
⇓∑

n=0

X̂n(x)

n!
, X̂n(x) = (M ↓ x)n.

Represent the series in X , we obtain

G1 = exp(↓M)
⇓∑

n=0

1

n!
X̂n[X](1),

X̂n[X](1) =
∑

φ↓Sn

∫

[0,1]n
(MI ↓Ht1) · · · (MI ↓Htn)1t1⇔t2⇔···⇔tndt1 · · · dtn.

Here we use the alternative representation (3.3.8). We can truncate the Dyson

series of G1 as

G1 = exp(↓M)
n∑

r=0

1

r!
X̂r[X](1) + exp(↓M)

⇓∑

r=n+1

1

r!
X̂r[X](1).
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Consider the o!-diagonal entry G1(i, j). Take n = dG(i, j)↓ 1, then since all the

path in G connecting i and j has length no less than dG(i, j) > n, it must hold that

↖1 ⇓ r ⇓ n, [(MI ↓Ht1) · · · (MI ↓Htr)] (i, j) = 0 ̸ X̂r[X](1)(i, j) = 0,

Therefore,

G1(i, j) = exp(↓M)
⇓∑

r=n+1

1

r!
X̂r[X](1)(i, j).

Since 0 ▽ Htk ▽ MI, it holds that ↘MI ↓Htk↘op ⇓ M , and thus

↘X̂n[X](1)↘op ⇓ M
n
n!

∫

[0,1]n
1t1⇔t2⇔···⇔tndt1 · · · dtn = M

n
.

̸ ↘G1(i, j)↘ ⇓ exp(↓M)
⇓∑

r=n+1

M
r

r!
= exp(↓M)

⇓∑

r=dG(i,j)

M
r

r!
.

This verifies the case when i ¬= j. For i = j, the result directly follows from

↘G1(i, i)↘ ⇓ ↘G1↘ ⇓ 1.

Lemma 3.3. The two representations of polynomials in X are equivalent, i.e.

P [X](t) = P{X}(t), ↖P → P.

where we denote P{X}(t) for polynomial P = an

∏
n

k=1(x↓ xk) as

P{X}(t) = an

tn

∑

ω→Sn

∫ t

0
(Ht1 ↓ xω1I)

∫ t1

0
(Ht2 ↓ xω2I) · · · · · ·

∫ tn→1

0
(Htn ↓ xωnI)dtn · · · dt2dt1.

Proof. We prove by induction. First note n = 1 is obvious,

(a1(x↓x1)){X}(t) = a1

t

∫
t

0
(Ht1 ↓x1I)dt1 = a1(X1(t)↓x1I) = (a1(x↓x1))[X](t).

Now consider n ↑ 2. Notice P [X](t), P{X}(t) can both be viewed as mulitlinear
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maps on x1, . . . , xn. Take the partial derivative w.r.t. xn,

∝xn (P{X}(t))

=
an

tn

n∑

k=1

∑

ω→Sn,ωk=n

∫ t

0
(Ht1 ↓ xω1I) · · ·

∫ tk→1

0
∝xn(Htk ↓ xnI) · · ·

∫ tn→1

0
(Htn ↓ xωnI)dtn · · · dt1

= ↓ an

tn

n∑

k=1

∑

ω→Sn,ωk=n

∫ t

0
(Ht1 ↓ xω1I) · · ·

∫ tk→1

0
I · · ·

∫ tn→1

0
(Htn ↓ xωnI)dtn · · · dt1

= ↓ an

tn

n∑

k=1

∑

ω→Sn,ωk=n

∫ t

0
(Ht1 ↓ xω1I) · · · (tk↑1 ↓ tk+1) · · ·

∫ tn→1

0
(Htn ↓ xωnI)dtn · · · d̂tk · · · dt1

= ↓ an

tn

n∑

k=1

∑

ω→Sn→1

∫ t

0
(Ht1 ↓ xω1I) · · · (tk↑1 ↓ tk) · · ·

∫ tn→2

0
(Htn→1 ↓ xωn→1I)dtn↑1 · · · dt1

= ↓ an

tn
· t

∑

ω→Sn→1

∫ t

0
(Ht1 ↓ xω1I) · · ·

∫ tn→2

0
(Htn→1 ↓ xωn→1I)dtn↑1 · · · dt1

= ↓ an

(
n↑1∏

k=1

(x↓ xk)


{X}(t) = ↓an

(
n↑1∏

k=1

(x↓ xk)


[X](t).

Here the first equality follows from discussion on the position of xn. The third

equality follows from integrating the variable tk and notice the constraint tk+1 ⇓
tk ⇓ tk↘1. The forth equality follows from relabeling the index and taking tn = 0.

The last equality follows from the induction hypothesis. By symmetry, the relation

holds for any xi:

∝xi (P{X}(t)) = ↓
(
an

∏

j:j ↔=i

(x↓ xj)
)
[X](t) = (∝xiP )[X](t),

since ∝xiP (x) = ↓an

∏
j:j ↔=i

(x↓ xj). Now notice the representation P [X] is linear

in the coe”cients of P , it is direct to verify

∝xi(P [X](t)) = (∝xiP )[X](t) = ∝xi (P{X}(t)) .

Finally notice when x1 = · · · = xn = 0,

x
n{X}(t) = n!

tn

∫
t

0
Ht1

∫
t1

0
Ht2 · · ·

∫
tn↓1

0
Htndt1 · · · dtn = Xn(t) = x

n[X](t).

Now the two multi-linear maps agree on one point, and also on all the partial

derivatives. So that they must be identical. This shows the equivalence holds for

n, and by induction, it holds for all n.
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3.3.3 Proof of Theorem 3.1

Proof of Theorem 3.1. Under the conditions in Theorem 3.1, Lemma 3.1 holds. By

(3.3.3), it remains to control ∝xjX
x

t,i
. Taking derivative w.r.t. x in (3.3.2), we get

d∝X
x

t
= ↓Ht ·∝X

x

t
dt, Ht := ↓∝2 log ϖ(Xx

t
). (3.3.9)

Note here ∝X
x

t
= ∝xX

x

t
→ Rd⇐d. Denote Gt = emt∝X

x

t
and H̃t = Ht ↓mI, then

it holds that

d

dt
Gt = emt (m∝X

x

t
↓Ht∝X

x

t
) = ↓H̃tGt, G0 = ∝X

x

0 = I.

By assumption, 0 ▽ H̃t ▽ (M↓m)I, and H̃t(i, j) = 0 if dG(i, j) > 1. By Lemma 3.2,

emt↘∝xjX
x

t,k
↘ = ↘Gt(k, j)↘ ⇓ e↘(M↘m)t

⇓∑

r=dG(j,k)

t
r(M ↓m)r

r!
. (3.3.10)

The estimate holds for any initial condition x. For di!erent vertices j → [b], consider

di!erent initial conditions x(j), and take summation over j → [b], we obtain

∑

j↓[b]

↘∝
x
(j)
j
X

x
(j)

t,k
↘

⇓ e↘mte↘(M↘m)t
∑

j↓[b]

⇓∑

r=dG(j,k)

t
r(M ↓m)r

r!

= e↘mte↘(M↘m)t




⇓∑

r=0

t
r(M ↓m)r

r!
+

⇓∑

k=1

∑

j:0<dG(j,k)⇔r

t
r(M ↓m)r

r!





⇓ e↘mt + e↘Mt

⇓∑

r=1

sr
ε
t
r(M ↓m)r

r!
.
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Here we use the sparsity condition |N r

j
\{j}| ⇓ sr

ε (2.1.3). From (3.3.3), we obtain

∑

j↓[b]

↘∝ju(x
(j))↘ ⇓

∑

j↓[b]

∫ ⇓

0
E↘∝

x
(j)
j
X

x
(j)

t,k
↘dt

= E
∫ ⇓

0

∑

j↓[b]

↘∝
x
(j)
j
X

x
(j)

t,k
↘dt

⇓
∫ ⇓

0

(
e↘mt + se↘Mt

⇓∑

r=1

r
ε
t
r(M ↓m)r

r!


dt

=
1

m
+

s

M

⇓∑

r=1

r
ε

(
1↓ m

M

)r

.

By Lemma 3.6, it holds that (denote κ = M

m
)

∑

j↓[b]

↘∝ju(x
(j))↘ ⇓ 1

m
+

s

M
ϱ!
(
m

M

)↘ε↘1 (
1↓ m

M

)

=
1

m


1 + sϱ!κε(1↓ κ

↘1)

⇓ sϱ!κε

m
.

Taking supremum over x(j), we obtain the gradient estimate with ω = sε!ςω

m
.

3.3.4 Proof of Theorem 3.2

We provide two proofs of Theorem 3.2. The first uses similar arguments as in

Theorem 3.1. The the second proof (from [46]) is based on the maximum principle

of the elliptic PDE.

Stochastic analysis approach

Proof I of Theorem 3.2. Similar as the proof of Theorem 3.1, it remains to control

∝X
x

t
in (3.3.9). To control the 2-norm of ∝xjX

x

t,k
→ Rdk⇐dj , consider fixing a test

vector vj → Rdj s.t. ↘vj↘ = 1. For i, j → [b], denote g
x

t
(k, j) = ∝xjX

x

t,k
· vj → Rdk .

Then

d

dt
g
x

t
(k, j) =

d

dt
∝xjX

x

t,k
vj = ↓Ht ·∝xjX

x

t
· vj

= ↓
b∑

l=1

Ht(k, l)∝xjX
x

t,l
· vj = ↓

b∑

l=1

Ht(k, l)g
x

t
(l, j).
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Here we denote Ht(k, l) → Rdk⇐dl as the (k, l)-th subblock of Ht. Then by the

diagonal dominance assumption,

1

2

d

dt
↘gx

t
(k, j)↘2 = ↓

b∑

l=1

(gx
t
(k, j))THt(k, l)g

x

t
(l, j)

⇓ ↓Mkk ↘gxt (k, j)↘
2 +

∑

l:l ↔=k

Mkl ↘gxt (k, j)↘ ↘gxt (l, j)↘ .

Notice
1

2

d

dt
↘gx

t
(k, j)↘2 = ↘gx

t
(k, j)↘ d

dt
↘gx

t
(k, j)↘, we obtain

d

dt
↘gx

t
(k, j)↘ ⇓ ↓Mkk ↘gxt (k, j)↘+

∑

l:l ↔=k

Mkl ↘gxt (l, j)↘ .

Note this inequality holds for any index j, k → [b], test vector vj and initial condition

x. For di!erent indices j → [b], consider di!erent initial conditions x(j), and denote

the matrix Gt → Rb⇐b where

Gt(k, j) = ↘gx
(j)

t
(k, j)↘.

Then the above inequality can be written compactly in a matrix form

d

dt
Gt ⇓ ↓M̃Gt, M̃ij := 2Mii1i=j ↓Mij.

Here ⇓ is in the entrywise sense. Note the initial condition is G0 = I, since

G0(k, j) = ↘gx
(j)

0 (k, j)↘ = ↘∝
x
(j)
j
X

x
(j)

0,k vj↘ = ↘∝
x
(j)
j
x
(j)
k
vj↘ = ωjk ↘vj↘ = ωjk.

By assumption, ↖i, j → [b], i ¬= j, M̃ij = ↓Mij ⇓ 0, and

∑

j:j ↔=i

|M̃ij|+ c =
∑

j:j ↔=i

Mij + c ⇓ Mii = M̃ii.

Thus we can apply Lemma 3.7 and obtain

↘Gt↘⇓ ⇓ e↘ct↘G0↘⇓ = e↘ct ̸ max
k

∑

j

↘∝
x
(j)
j
X

x
(j)

t,k
vj↘ ⇓ e↘ct

.

50



Since vj is arbitrary, we obtain that

max
k

∑

j

↘∝
x
(j)
j
X

x
(j)

t,k
↘ ⇓ e↘ct

.

Recall (3.3.3), this implies

∑

j

↘∝ju(x
(j))↘ ⇓

∑

j

∫ ⇓

0
E↘∝

x
(j)
j
X

x
(j)

t,i
↘dt

= E
∫ ⇓

0

∑

j

↘∝
x
(j)
j
X

x
(j)

t,i
↘dt

⇓ E
∫ ⇓

0
e↘ctdt = c

↘1
.

Now as x(j) is arbitrary, we obtain the gradient estimate with ω = c
↘1.

PDE analysis approach

Proof II of Theorem 3.2. Let v : Rd ⇔ Rdj be a vector-valued function. Denote

Lωv as the entrywise application of the operator Lω (cf. (3.1.3)) on vi, i.e.

Lωv := (Lωv1, . . .Lωvdj)
T
.

Note it su”ces to prove (3.1.6) for ςi → C
1 ∀ Lip1. Since this space is dense

in Lip1, so for general ςi → Lip1, we can take a sequence of ς(k)
i

→ C
1 ∀ Lip1 that

converges to ςi. If (3.1.6) holds uniformly for ς(k)
i

, then passing to the limit shows

that it holds for any ςi → Lip1.

Now fix any ςi → C
1 ∀ Lip1. It is straightforward to verify by standard elliptic

theory that the solution exists (up to a constant) and u → C
3. Taking the gradient

w.r.t. xj in (3.1.3), we obtain

Lω(∝ju)(x) +
∑

k

∝2
jk
log ϖ(x)∝ku(x) = ωij∝jςi(xi).

RecallH(x) = ↓∝2 log ϖ(x). Multiplying the above equality from left by (∝ju(x))
T,
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and by ςi → Lip1 and the diagonal dominance assumption, we have

(∝ju(x))
TLω(∝ju)(x)

=
∑

k

(∝ju(x))
T
Hjk(x)∝ku(x) + ωij (∝ju(x))

T∝jςi(xi)

↑ Mjj ↘∝ju(x)↘2 ↓
∑

k:k ↔=j

Mij↘∝ju(x)↘↘∝ku(x)↘ ↓ ωij↘∝ju(x)↘.

(3.3.11)

The key is to show the maximum principle still holds for the operator Lω when acting

on a vector-valued function. Consider x where ↘∝ju(x)↘2 reaches its maximum,

i.e. ↘∝ju(x)↘2 = ↘∝ju↘L↑. The first order optimality condition reads

0 = ∝

↘∝ju(x)↘22


= 2∝∝ju(x) ·∝ju(x),

and the second order optimality condition reads

0 ↑ %

↘∝ju(x)↘22


= 2↘∝∝ju(x)↘2F + 2(∝ju(x))

T%∝ju(x).

Thus, (∝ju(x))T%∝ju(x) ⇓ 0. Under these conditions,

(∝ju(x))
TLω(∝ju(x)) = (∝ju(x))

T%∝ju(x) +∝ log ϖ(x) ·∝∝ju(x) ·∝ju(x) ⇓ 0.

Hence, at the maximum point (3.3.11) reads

0 ↑ Mjj ↘∝ju(x)↘2 ↓
∑

k:k ↔=j

Mjk↘∝ju(x)↘↘∝ku(x)↘ ↓ ωij↘∝ju(x)↘.

If ↘∝ju↘L↑ > 0, it holds that

ωij ↑ Mjj ↘∝ju(x)↘ ↓
∑

k:k ↔=j

Mjk↘∝ku(x)↘.

Taking summation over j → I+ := {j → [b] : ↘∝ju↘L↑ > 0} gives

1 ↑
∑

j↓I+

ωij ↑
∑

j↓I+



Mjj ↘∝ju(x)↘ ↓
∑

k:k ↔=j

Mjk↘∝ku(x)↘





↑
∑

j↓[b]

Mjj ↘∝ju(x)↘ ↓
∑

k ↔=j

Mjk↘∝ku(x)↘

=
∑

j↓[b]

(
Mjj ↓

∑

k:k ↔=j

Mkj

)
↘∝ju(x)↘ ↑ c

∑

j↓[b]

↘∝ju(x)↘ .
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Here we use the diagonal dominance assumption. The conclusion follows.

3.4 Locality in Langevin semigroup

In the previous sections, we developed the marginal Stein’s method, which is used

to prove marginal transport inequalities and the exponential decay of correlations

for localized distributions. In this section, we show that this method can be

interpreted as a quantification of the locality in the Langevin semigroup. It is well

known that when the target distribution is strongly log-concave, the associated

Langevin semigroup is exponential contractive in the H
1-norm. To study the

locality property, we adjust the norm to locality-aware variants. We show that

the Langevin semigroup is eventually exponentially contractive under these new

norms. We will discuss two applications of this eventual exponential contraction,

the ω-locality and the convergence of Langevin dynamics under the W1,⇓-distance.

3.4.1 Langevin semigroup

Consider the (overdamped) Langevin dynamics

dXx

t
= ∝ log ϖ(Xx

t
)dt+

⊥
2dWt, X

x

0 = x, (3.4.1)

where ϖ is a target distribution and Wt is a standard Brownian motion. The

Langevin semigroup {Pt}t→0 is defined as the transition semigroup of the Langevin

dynamics, i.e., for t ↑ 0,

Ptu(x) = E[u(Xx

t
)]. (3.4.2)

It is straightforward to verify that {Pt}t→0 is a Markov semigroup, i.e.

• (Semigroup) P0 = id, Ps+t = Ps ∃ Pt for all s, t ↑ 0.

• (Markovian) Pt1 = 1, and Ptf ↑ 0 if f ↑ 0.

Note its infinitesimal generator is Lω, i.e.,

Lωu(x) = lim
t↖0

Ptu(x)↓ u(x)

t
= ∝ log ϖ(x) ·∝u(x) +%u(x). (3.4.3)
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Exponential contraction

Suppose ϖ is strongly log-concave, i.e.

↓∝2 log ϖ(x) ⊤ mI.

It is known that [3] that the Langevin semigroup is exponentially contractive. Here

we use the gradient bound (see Section 3.3 in [3]) to illustrate it.

For any u → H
1
0 (ϖ) = {u → H

1(ϖ) : Eω[u] = 0} (3.1.5), notice

d

dt
↘∝Ptu↘2ω = 2 ≃∝Ptu,∝LωPtu⇐ω

= 2 ≃∝Ptu,Lω (∝Ptu)⇐ω + 2
〈
∝Ptu,∝2 log ϖ(x) ·∝Ptu

〉
ω

⇓ ↓ 2
∝2

Ptu
2
ω
↓ 2m ↘∝Ptu↘2ω ⇓ ↓2m ↘∝Ptu↘2ω .

Here we denote Lv = (Lv1, . . .Lvd) if v = (v1, . . . , vd) is a vector-valued function,

and use the fact that ≃f,Lωg⇐ω = ↓≃∝f,∝g⇐
ω
. Then we obtain

↘∝Ptu↘2ω ⇓ e↘2mt ↘∝u↘2
ω
.

This implies that the Pt is exponentially contractive in the H
1-norm. In the

operator form, we have

↘Pt↘H1
0 (ω)↖H

1
0 (ω)

:= sup
0 ↔=u↓H1

0 (ω)

↘Ptu↘H1
0 (ω)

↘u↘
H

1
0 (ω)

⇓ e↘mt
. (3.4.4)

Gradient estimate of Stein equation

The solution to Stein equation can be formally written as

u = L↘1
ω

(ς↓ Eω[ς]) . (3.4.5)

Under the settings in this thesis (see Section 3.1.2), L↘1
ω

can be regarded as an

operator in H
1
0 (ϖ). The Poincaré inequality implies

↘L↘1
ω
↘H1

0 (ω)↖H
1
0 (ω)

⇓ CPI.
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This can be verified directly: for u,ς → H
1
0 (ϖ),

↘u↘2
H

1
0 (ω)

:= ↘∝u↘2
L2(ω) = ↓≃Lωu, u⇐ω = ↓≃ς↓ Eω[ς], u⇐ω

⇓ ↘ς↓ Eω[ς]↘L2(ω) ↘u↘L2(ω) ⇓ CPI ↘∝ς↘
L2(ω) ↘∝u↘

L2(ω) .

Under stronger assumption, i.e. the log-concavity condition, this bound can be

directly obtained from the exponential contraction. Note formally,

L↘1
ω

= ↓
∫ ⇓

0
etLεdt = ↓

∫ ⇓

0
Ptdt. (3.4.6)

Due to the exponential contraction, the above equation holds as a strict identity in

the H
1-norm, i.e. for ς → H

1
0 (ϖ),

u(x) = L↘1
ω
ς = ↓

∫ ⇓

0
Ptς(x)dt = ↓

∫ ⇓

0
Eω[ς(X

x

t
)]dt.

This is precisely Lemma 3.1. As a result,

L↘1
ω


H

1
0 (ω)↖H

1
0 (ω)

⇓
∫ ⇓

0
↘Pt↘H1

0 (ω)↖H
1
0 (ω)

dt ⇓
∫ ⇓

0
e↘mtdt =

1

m
. (3.4.7)

3.4.2 Eventual exponential contraction

To study the locality structure, we introduce two di!erent metrics as variants of

the H1-norm used in the previous section. The first is the ϑ1(Lip)-(semi)norm used

in Definition 3.1:

|u|
↼1(Lip) :=

∑

j↓[b]

↘∝ju↘L↑ . (3.4.8)

The other is a weaker version, the |·|Lip,⇓-(semi)norm:

|u|Lip,⇓ = ess sup
x

∑

j↓[b]

↘∝ju(x)↘ . (3.4.9)

The reason for the name |·|Lip,⇓ is given in Lemma 3.5. Under the new norm, we

show that the Langevin semigroup is eventually exponentially contractive when the

target distribution is strongly log-concave and localized. This is in contrast to the

exponential contraction in the H1-norm, which is gauranteed by a positive spectral

gap. While under the new norm, the generator no longer exhibits a spectral gap,

and one can at most establish eventual exponential contraction. This behavior

arises from the interplay between two opposing e!ects: the exponential decay due
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to the strong log-concavity and the slower di!usion due to the locality of the graph.

We prove the following theorem.

Theorem 3.8. Let G be a (s, ϱ)-local graph. Suppose ϖ → P(Rd) is localized on G,

and satisfies for some 0 < m ⇓ M < ′,

↖x → Rd
, mI ▽ ↓∝2 log ϖ(x) ▽ MI.

Then it holds that for all t ↑ 0,

max

↘Pt↘|·|ϑ1(Lip)↖|·|ϑ1(Lip)

, ↘Pt↘|·|Lip,↑↖|·|Lip,↑

}
⇓ Mt, (3.4.10)

where

Mt := e↘mt (1 + spε(t(M ↓m))) , pk(x) := e↘x

⇓∑

r=0

r
k
x
r

r!
. (3.4.11)

As a corollary, denote κ = M

m
, and we have

max
L↘1

ω


|·|ϑ1(Lip)↖|·|ϑ1(Lip)

,
L↘1

ω


|·|Lip,↑↖|·|Lip,↑

}
⇓ sϱ!κε

m
. (3.4.12)

Remark 3.5. The bound Mt is not necessarily monotone in t. As Mt is a product

of a polynomial and an exponential function in t, it typically first increases and

then decreases. This explains the term eventual exponential contraction.

We also comment that this is not an artifact of the proof. The exponential

term comes from the strong log-concavity, while the polynomial term describes the

di!usion in the graph, which is due to the polynomial growth of the neighborhood

volume in the graph.

Proof. Let u → H
1
0 (ϖ). By definition, we have

Ptu(x) = E[u(Xx

t
)],

where X
x

t
is the path solution of the Langevin dynamics with initial state x. Note

∝jPtu(x) =
∑

k↓[b]

E[∝xjX
x

t,k
·∝ku(X

x

t
)].
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By the same argument as in the proof of Theorem 3.1, we have (cf. (3.3.10))

↘∝xjX
x

t,k
↘ ⇓ e↘Mt

⇓∑

r=dG(j,k)

t
r(M ↓m)r

r!
.

Therefore, using the (s, ϱ)-locality, we have

|Ptu|↼1(Lip) :=
∑

j↓[b]

↘∝jPtu↘L↑

⇓
∑

j,k↓[b]

E
[∝xjX

x

t,k

 ↘∝ku(X
x

t
)↘
]

⇓
∑

k↓[b]

↘∝ku↘L↑




∑

j↓[b]

e↘Mt

⇓∑

r=dG(j,k)

t
r(M ↓m)r

r!





= e↘Mt
∑

k↓[b]

↘∝ku↘L↑




⇓∑

r=0

t
r(M ↓m)r

r!
+

⇓∑

r=1

∑

j:1⇔dG(j,k)⇔r

t
r(M ↓m)r

r!





⇓ e↘Mt
∑

k↓[b]

↘∝ku↘L↑

[
e(M↘m)t +

⇓∑

r=1

sr
ε
t
r(M ↓m)r

r!

]

⇓ |u|
↼1(Lip) e

↘mt (1 + spε(t(M ↓m))) .

where we denote

pk(x) := e↘x

⇓∑

r=0

r
k
x
r

r!
. (3.4.13)

It is verified in Lemma 3.4 that pk is a monic polynomial of degree k. We obtain

↘Pt↘|·|ϑ1(Lip)↖|·|ϑ1(Lip)
⇓ e↘mt (1 + spε(t(M ↓m))) =: Mt.
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For the |·|Lip,⇓-norm, the proof is similar:

|Ptu|Lip,⇓ := ess sup
x

∑

j↓[b]

↘∝jPtu(x)↘

⇓ ess sup
x

∑

j,k↓[b]

E
[∝xjX

x

t,k

 ↘∝ku(X
x

t
)↘
]

⇓ ess sup
x

E
∑

k↓[b]

↘∝ku(X
x

t
)↘




∑

j↓[b]

e↘Mt

⇓∑

r=dG(j,k)

t
r(M ↓m)r

r!





⇓ ess sup
x

E
∑

k↓[b]

↘∝ku(X
x

t
)↘ ·Mt

⇓ MtE



ess sup
x

∑

k↓[b]

↘∝ku(X
x

t
)↘



 ⇓ Mt |u|Lip,⇓ .

Thus we proved that ↘Pt↘|·|Lip,↑↖|·|Lip,↑
⇓ Mt.

For the corollary, we note that the operator L↘1
ω

can be expressed as

L↘1
ω

= ↓
∫ ⇓

0
Ptdt.

Therefore, by the definition of Mt and Lemma 3.6, we have

L↘1
ω


|·|ϑ1(Lip)↖|·|ϑ1(Lip)

⇓
∫ ⇓

0
↘Pt↘|·|ϑ1(Lip)↖|·|ϑ1(Lip)

dt ⇓
∫ ⇓

0
Mtdt

=

∫ ⇓

0

(
e↘mt + se↘Mt

⇓∑

r=1

r
ε
t
r(M ↓m)r

r!


dt

=
1

m
+ s

⇓∑

r=1

r
ε(M ↓m)r

r!

∫ ⇓

0
e↘Mt

t
rdt

=
1

m
+

s

M

⇓∑

r=1

r
ε

(
1↓ m

M

)r

⇓ 1

m
+

s

M
ϱ!
(
m

M

)↘ε↘1 (
1↓ m

M

)
(Lemma 3.6)

=
1

m


1 + sϱ!κε(1↓ κ

↘1)

⇓ sϱ!κε

m
.

Here we denote κ = M

m
. The proof is similar for the |·|Lip,⇓-norm.

Lemma 3.4. pk(x) := e↘x
∑⇓

r=0 r
k x

r

r! is a monic polynomial of degree k.
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Proof. It can be directly verified that

⇓∑

r=0

r
k
x
r

r!
=

(
x
d

dx

)k
( ⇓∑

r=0

x
r

r!


=

(
x
d

dx

)k

ex.

By definition,
∑⇓

r=0 r
k x

r

r! = expk(x), so that

expk+1(x) =

(
x
d

dx

)
(expk(x)) = xex (pk(x) + p

⇒
k
(x)) .

Therefore,

pk+1(x) = x (pk(x) + p
⇒
k
(x)) , p0(x) = 1.

The conclusion follows by standard induction.

3.4.3 Applications

ω-locality

A direct result of the above theorem is the ω-locality of Markov random field on

local graph (Theorem 3.1). Note the test function ς(x) = ςi(xi), |ςi|Lip ⇓ 1 satisfies

|ς|
↼1(Lip) =

∑

j↓[b]

↘∝jς↘L↑ = |ςi|Lip ⇓ 1.

Therefore, the solution u to Stein equation Lωu = ς↓ Eω[ς] satisfies

∑

j↓[b]

↘∝ju↘L↑ = |u|
↼1(Lip) ⇓

L↘1
ω


↼1(Lip)↖↼1(Lip)

|ς|
↼1(Lip) ⇓

sϱ!κε

m
.

Convergence of Langevin dynamics under W1,⇓

In this section, we establish the convergence of the Langevin dynamics under the

W1,⇓-distance. Wp,⇓-distance, introduced in [20], is the p-Wasserstein distance

with ϑ⇓-norm as the underlying metric. Specifically, we define

Wp,⇓(µ, ϱ) = inf
↽↓!(µ,ε)

(∫
↘x↓ y↘p2,⇓ d▷(x, y)

)1/p

. (3.4.14)

Here ’(µ, ϱ) denotes the set of couplings between µ and ϱ. Note we use the norm

↘x↓ y↘2,⇓ := max
j↓[b]

↘xj ↓ yj↘ , (3.4.15)
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as the base metric instead of ↘·↘⇓ in the original definition in [20]. This is for

consistency with the block decomposition x = (x1, . . . , xb). One can simply take

dj ↙ 1 to go back to the original definition.

Note Wp,⇓ is stronger than the marginal Wp distance, i.e.

max
j↓[b]

Wp(µj, ϱj) ⇓ Wp,⇓(µ, ϱ).

Simply note that

↖j → [b], Wp,⇓(µ, ϱ) ↑ inf
↽↓!(µ,ε)

(∫
↘xj ↓ yj↘p d▷(x, y)

)1/p

= Wp(µj, ϱj).

We focus on the case p = 1, which admits a duality representation.

Lemma 3.5. For µ, ϱ → P1(Rd), it holds that

W1,⇓(µ, ϱ) = sup
|ϱ|Lip,↑⇔1

[Eµ[ς]↓ Eε [ς]] , (3.4.16)

where we denote the |·|Lip,⇓-seminorm

|ς|Lip,⇓ := sup
x ↔=y

|ς(x)↓ ς(y)|
↘x↓ y↘2,⇓

= ess sup
x

∑

j↓[b]

↘∝jς(x)↘ . (3.4.17)

Proof. (3.4.16) directly follows the Kantorovich-Rubinstein duality [113]. For the

second equality, first note ↖x, y → Rd,

ς(x)↓ ς(y) =

∫ 1

0

∑

j↓[b]

∝jς((1↓ t)x+ ty) · (xj ↓ yj)dt

⇓ ↘x↓ y↘2,⇓
∫ 1

0

∑

j↓[b]

↘∝jς((1↓ t)x+ ty)↘ dt

⇓ ↘x↓ y↘2,⇓ ess sup
x

∑

j↓[b]

↘∝jς(x)↘ .

This implies that |ς|Lip,⇓ ⇓ ess supx
∑

j↓[b] ↘∝jς(x)↘. Conversely, for any x → Rd,

denote t → Rd s.t. tj = ∝jς(x)/ ↘∝jς(x)↘. Note ↘t↘2,⇓ = 1, and we have for

su”ciently small h > 0,

ς(x+ ht)↓ ς(x) =
d∑

j=1

ht
T
j
∝jς(x) + o(h) = h

d∑

j=1

↘∝jς(x)↘+ o(h).
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̸ |ς|Lip,⇓ ↑ ς(x+ ht)↓ ς(x)

h
=

d∑

j=1

↘∝jς(x)↘+ o(1).

Since x and h are arbitrary, we have |ς|Lip,⇓ ↑ ess supx
∑

j↓[b] ↘∝jς(x)↘.

Next we state the convergence theorem.

Theorem 3.9. Let G be a (s, ϱ)-local graph. Suppose ϖ → P(Rd) is localized on G,

and satisfies for some 0 < m ⇓ M < ′,

↖x → Rd
, mI ▽ ↓∝2 log ϖ(x) ▽ MI.

Consider the Langevin dynamics for ϖ with initial distribution µ0, and let µt be the

distribution of Xx

t
. Then for all t ↑ 0,

W1,⇓(µt, ϖ) ⇓ MtW1,⇓(µ0, ϖ), (3.4.18)

where Mt is defined in (3.4.11).

Proof. Let ς → H
1
0 (ϖ) be any test function s.t. |ς|Lip,⇓ ⇓ 1. By Theorem 3.8,

|Ptς|Lip,⇓ ⇓ Mt |ς|Lip,⇓ ⇓ Mt.

Therefore, by Lemma 3.5, we have

W1,⇓(µt, ϖ) = sup
|ϱ|Lip,↑⇔1

[Eµt[ς]↓ Eω[ς]]

= sup
|ϱ|Lip,↑⇔1

[Eµ0[Ptς]↓ Eω[Ptς]]

⇓ Mt sup
|⇀|Lip,↑⇔1

[Eµ0[⇀]↓ Eω[⇀]] = MtW1,⇓(µ0, ϖ).

This completes the proof.

Remark 3.6. Since under W1,⇓-norm, the Langevin dynamics is not contractive

in the usual sense, one cannot expect one-step coupling to work without further

conditions. This is the main reason for the multistep coupling used in [20]. In fact,

[20] essentially uses a discrete version of Theorem 3.9 by taking t larger so that

Mt < 1.
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3.5 Proofs

3.5.1 Proof of Theorem 3.4

Proof of Theorem 3.4. The proof is based on that of Theorem 3.1 and Theorem 3.3.

We only present the di!erent parts for the multiple block case.

For any index set I ↔ [b], denote dI =
∑

i↓I di. Then by definition,

W1(ϖI , ϖ
⇒
I
) = sup

ϱI↓Lip1(RdI )

∫
ςI(xI) (ϖI(xI)↓ ϖ

⇒
I
(xI)) dxI .

Given ςI , let u(x) solve the marginal Stein equation

Lω→u(x) = ςI(xI)↓ Eω→[ςI(xI)].

Similarly as in Lemma 3.1, it holds that

↘∝ju(x)↘ ⇓
∫ ⇓

0
E
[
↘∝jX

x

t,I
↘
∝ςI(X

x

t,I
)
] dt ⇓

∫ ⇓

0
E↘∝jX

x

t,I
↘dt,

where X
x

t
is the solution to the Langevin dynamics for ϖ⇒ with initial condition x.

Notice ↘∝jX
x

t,I
↘ ⇓

∑
i↓I ↘∝jX

x

t,i
↘, we obtain that

↘∝u↘⇓,1 =
∑

j↓[b]

↘∝ju(x)↘ ⇓
∑

j↓[b]

E
∫ ⇓

0

∑

i↓I
↘∝jX

x

t,i
↘dt ⇓

∑

i↓I
ω = ω|I|.

Using the same arguments in Theorem 3.3, we obtain

W1(ϖI , ϖ
⇒
I
) ⇓ ↘∝u↘⇓,1 ·max

j

↘∝j log ϖ
⇒ ↓∝j log ϖ↘L1(ω)

⇓ ω|I| ·max
j

↘∝j log ϖ
⇒ ↓∝j log ϖ↘L1(ω) .

This completes the proof.

3.5.2 Lemmas

Lemma 3.6. For any t ↑ 0 and x → (0, 1), it holds that

∑

k→1

k
t(1↓ x)k < 2&(t+ 1)x↘t↘1(1↓ x).

When t → N, the factor 2 can be omitted, i.e.
∑

k→1 k
t(1↓ x)k ⇓ t!x↘t↘1(1↓ x).
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Proof. We prove by induction. For t = 0, it holds that

∑

k→1

(1↓ x)k =
1↓ x

x
.

For t → (0, 1), first notice by Abel transformation,

x

∑

k→1

k
t(1↓ x)k =

∑

k→1

k
t
[
(1↓ x)k ↓ (1↓ x)k+1

]
=

∑

k→1


k
t ↓ (k ↓ 1)t


(1↓ x)k.

Therefore, since k
t ↓ (k ↓ 1)t ⇓ t(k ↓ 1)t↘1 when t → (0, 1) and k ↑ 2,

∑

k→1

k
t(1↓ x)k ⇓ x

↘1

[
(1↓ x) +

∑

k→2

t(k ↓ 1)t↘1(1↓ x)k
]

⇓ x
↘1(1↓ x)

[
1 + t

∑

k→2

(k ↓ 1)t↘1e↘(k↘1)x

]

⇓ x
↘1(1↓ x)

[
1 + t

∫ ⇓

0
y
t↘1e↘yxdy

]

= x
↘1(1↓ x)


1 + t&(t)x↘t



< 2&(t+ 1)x↘t↘1(1↓ x).

Here we use t&(t) = &(t + 1) and &(t + 1)x↘t
> 1 in the last step. This verifies

the case t → [0, 1). Suppose the inequality holds for t↓ 1 ↑ 0, then using the same

methods,

∑

k→1

k
t(1↓ x)k = x

↘1
∑

k→1


k
t ↓ (k ↓ 1)t


(1↓ x)k

⇓ x
↘1

∑

k→1

tk
t↘1(1↓ x)k

< x
↘1
t · 2&(t)x↘(t↘1)↘1(1↓ x)

= 2&(t+ 1)x↘t↘1(1↓ x).

Here the first inequality follows from the elementary inequality k
t↓ (k↓1)t ⇓ tk

t↘1

when t ↑ 1, and the second inequality follows from induction hypothesis. The

refined inequality for t → N can be obtained similarly. This completes the proof.

Lemma 3.7. Suppose Gt → Rb⇐b
→0 is a time-dependent nonnegative matrix satisfying

d

dt
Gt ⇓ ↓MGt,
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where ⇓ is in the entrywise sense, and M → Rb⇐b is c-diagonal dominant with

non-positive o!-diagonal entries, i.e. ↖i, j → [b], i ¬= j,

∑

j:j ↔=i

|Mij|+ c ⇓ Mii; Mij ⇓ 0.

Then for any t ↑ 0, it holds

↘Gt↘⇓ ⇓ e↘ct↘G0↘⇓.

Proof. Denote G
c

t
:= ectGt, then

d

dt
G

c

t
= ect

(
d

dt
Gt + cGt

)
⇓ ect (↓MGt + cGt) = (↓M + cI)Gc

t
.

Multiple both sides by 1 = (1, . . . , 1)T → Rb from right,

d

dt
G

c

t
1 ⇓ (↓M + cI)Gc

t
1.

This operator preserves the inequality since it is equivalent to taking summation

over row indices. We claim that

↖t ↑ 0, ↘Gc

t
1↘⇓ ⇓ ↘Gc

01↘⇓, (3.5.1)

which is a reformulation of ↘Gt↘⇓ ⇓ e↘ct ↘G0↘⇓, since G
c

t
→ Rb

→0 and

ect↘Gt↘⇓ = ↘Gc

t
↘⇓ = max

i

∑

j

G
c

t
(i, j) = ↘Gc

t
1↘⇓.

We prove (3.5.1) by contraction. Suppose (3.5.1) is false, then ⇑s ↑ 0 and i s.t.

d

dt
(Gc

s
1)i > 0, (Gc

s
1)i = ↘Gc

s
1↘⇓.
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On the other hand, notice by assumption on M ,

d

dt
(Gc

s
1)i ⇓ (↓Mii + c) (Gc

s
1)i +

∑

j:j ↔=i

(↓Mij)(G
c

s
1)j

⇓ (↓Mii + c) (Gc

s
1)i +

∑

j:j ↔=i

(↓Mij)(G
c

s
1)i

=



↓Mii + c+
∑

j:j ↔=i

|Mij|



 (Gc

s
1)i ⇓ 0.

Contradiction. This proves our result.
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Chapter 4

Localization Method in Sampling

The previous chapters discuss the theoretical properties of the locality structure.

In essence, the locality structure induces a form of low-dimensionality, so that it

is natural to study it algorithmically for high dimensional sampling problems. In

this chapter, we will review some of the existing methods and discuss the general

idea of localized sampling. We propose a framework to localize existing samplers,

which turns a high-dimensional problem into many low-dimensional subproblems.

We will then discuss its computational advantages, i.e. localized and parallelizable

implementation; and its theoretical advantages, i.e. lower statistical complexity

and controllable localization error. Specific examples of localized sampling will be

discussed in the next two chapters.

4.1 Review on existing localized samplers

In this section, we review two existing methods for localized sampling, including the

localized versions of SVGD [77, 115, 121] and Schrödinger bridge sampler [55, 57].

Detailed discussions on the localized MALA [95, 94, 81, 110] will be introduced in

Chapter 5.

4.1.1 Message passing Stein variational gradient descent

Stein variational gradient descent (SVGD) [77] is a particle method to sample

from a target distribution via a gradient flow [76, 22]. It uses an ensemble of

particles {x(i)}N
i=1 to approximate the target distribution ϖ, and evolves the particles
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according to the following dynamics

d

dt
x
(l) = v(x(l)) :=

1

N

N∑

i=1


∝ log ϖ(x(i))k(x(i), x(l)) +∝1k(x

(i)
, x

(l))

,

where k(x, y) is a positive definite kernel function. The mean field limit of the

velocity field is (denote µ as the mean field measure of the particles)

v = Eµ [∝ log ϖ(x)k(x, ·) +∝1k(x, ·)] = Eµ

[
k(x, ·)∝ log

ϖ(x)

µ(x)

]
.

Notice ↓∝ log ω

µ
is the first variation of the KL divergence, i.e.

∝ log
ϖ

µ
= ↓ ω

ωµ
KL (µ↘ϖ) .

So that SVGD can be viewed as a gradient flow of KL (·↘ϖ) w.r.t. some kernelized

metric (see [22]). Note also v admits a variational form [76]

v = argmax
↗ω↗

H
⇔1

[
↓ d

dε
KL ((id + εε)#µ↘ϖ)

]
.

Here ↘ε↘H denotes the RKHS norm of the vector field ε. Here H = H↑d

0 is the

corresponding d↗ 1 vector-valued RKHS, and H0 is the RKHS of the kernel k.

The use of a kernel k makes SVGD di”cult to scale to high dimensions. For

instance, the widely used Gaussian kernel k(x, y) = N(x ↓ y; 0, ⇁2
I) decays ex-

ponentially in the distance ↘x↓ y↘, which is of O(
⊥
d) in high dimensions. This

makes the computation very sensitive to the error and the hyperparameters. It is

also reported in [121] that SVGD tends to underestimate the marginal variance

when dimensions are high.

To address the dimension issue, [115, 121] concurrently proposed a localized

version of SVGD, which uses localized kernels inspired by the locality structure.

[121] propose to consider a coordinate-wise velocity field that solves

vj = argmax
↗ϱj↗Hj

⇔1

[
↓ d

dε
KL ((id + εεj)#µ↘ϖ)

]
,

where εj(x) = (0, · · · , 0,ςj(xj | x↘j), 0, · · · , 0).
(4.1.1)

Here Hj is some localized RKHS to be determined later. Since εj is non-zero only
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at the j-th component, it holds that

d

dε
KL ((id + εεj)#µ↘ϖ) =

d

dε
KL ((id + εςj(· | x↘j))#µ(xj | x↘j)↘ϖ(xj | x↘j)) .

If ϖ is localized, ϖ(xj | x↘j) = ϖ(xj | xNj); and as an approximation of ϖ, µ should

approximately satisfy the same property. So that the quantities to be optimized in

(4.1.1) are approximately independent of x↘Nj . Therefore, one can enforce ςj to

be independent of x↘Nj . Take the local kernel

kj = kj(xNj , yNj).

Consider the vector-valued RKHS Hj = H↑dj

j,0 , where Hj,0 is the RKHS of the

kernel kj. With this choice, the optimal v↙
j
of (4.1.1) is

v
↙
j
(xNj) = Ey≃µ

[
kj(yNj , xNj)∝yj log

ϖ(yj|yN↓

j
)

µ(yj|yN↓

j
)

]

= Ey≃µ


∝yj log ϖ(yj|yN↓

j
)kj(yNj , xNj) +∝1kj(yNj , xNj)


.

The resulted localized SVGD is: ↖j → [b] and l → [N ],

d

dt
x
(l)
j

=
1

N

N∑

i=1

[
∝

x
(i)
j
log ϖ(x(i)

j
|x(i)N↓

j
)kj(x

(i)
Nj
, x

(l)
Nj
) +∝1kj(x

(i)
Nj
, x

(l)
Nj
)

]
. (4.1.2)

It is also called graphical SVGD in [115]. Note that the localized SVGD (4.1.2) can

be regarded as a collection of b SVGD velocity fields (with only j-th component

used) for the marginal distributions ϖ(xNj). This is a typical way of localizing

samplers, that is, taking the transition kernel for j-th component as the j-th

component of the original transition kernel for the marginal distribution ϖ(xNj).

It is almost obvious that the localized SVGD (4.1.2) no longer su!ers from the

dimension issues, since the localized flow is low dimensional for each j. All the

computations are also localized and thus parallelizable. Numerical experiments in

[115, 121] validate the e!ectiveness of the localized SVGD compared to the vanilla

SVGD in high dimensions.
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4.1.2 Localized Schrödinger bridge sampler

Schrödinger bridge (SB) sampler [55] aims to learn a transition kernel P⇁(x, y) that

is invariant under the target distribution ϖ, given data {X(i)}N
i=1 sampled from ϖ.

The learned transition kernel P⇁(x, y) is then used to sample from ϖ.

[55] proposes to construct P⇁ by approximating the SB solution Q⇁ w.r.t. ϖ and

a reference transition kernel T⇁. Specifically, [55] takes T⇁ as the Gaussian kernel

T⇁(x, y) = N(y; x, 2◁I), and the according SB problem [88, 21] is to find a transition

kernel Q⇁(x, y) s.t.

Q⇁ = argmin
Q:ωQ=ω

KL (ϖ(x)Q(x, y)↘ϖ(x)T⇁(x, y)) .

The solution is of the form

Q⇁(x, y) = 0⇁(x)T⇁(x, y)⇀⇁(y)ϖ(y),

and 0⇁,⇀⇁ can be solved by the Sinkhorn algorithm [36, 55]. Note 0⇁ = ⇀⇁ since T⇁

is symmetric. Finally, P⇁ can be taken as the Gaussian approximation of Q⇁, i.e.

P
SB
⇁

(x, y) = T⇁(m⇁(x), y), m⇁(x) = Eω↑Qϖ [y|x] .

Once ⇀⇁ is obtained, m⇁ can be explicitly computed by

m⇁(x) =

∫
yQ⇁(x, y)dy = Ey≃ω[w⇁(x, y)y],

w⇁(x, y) =
dQ⇁(x, ·)

dϖ
(y) = 0⇁(x)T⇁(x, y)⇀⇁(y) =

T⇁(x, y)⇀⇁(y)∫
T⇁(x, y)⇀⇁(y)ϖ(y)dy

.

The discretized version can be easily obtained for numerical implementation. Note

when ◁ is small, P SB
⇁

will be a good approximation of Q⇁, and thus can be ap-

proximately used as a MCMC kernel to sample ϖ. Also note {⇀⇁(X(i))}N
i=1 can be

computed o(ine using the Sinkhorn algorithm, and in sampling, only ω⇁(x,X(i))

needs to be computed, which is relatively cheaper. We mention that P
SB
⇁

can

be regarded as an approximation of exp(◁Lω) (see (3.1.1)), which is more stable

compared to the Euler-Maruyama discretization of the Langevin dynamics [55].

However, learning a generic high dimensional transition kernel P⇁ faces the curse

of dimensionality. To reduce the sample complexity, [56] proposes the localized SB
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(LSB) sampler by using the localized transition kernel:

P
LSB
⇁

(x, y) =
∏

s↓[d]

N(ys;m⇁,s(xNs), 2◁I), (4.1.3)

where Ns denotes the neighbors of s, and m⇁,s is obtained by

m⇁,s(xNs) =

∫
ysQ⇁,s(xNs, yNs)dyNs.

Here Q⇁,s solves the SB problem for the marginal distribution ϖ(xNs) with

T⇁,s(xNs, yNs) = N(yNs; xNs, 2◁I).

Detailed derivation can be found in [56].

As in the localized SVGD, the LSB learns a collection of d SB samplers for the

marginal distributions ϖ(xNs), and use the learned transition kernels to sample in

a Gibbs way. Since the LSB turns a high-dimensional kernel learning problem into

d low-dimensional ones, the sample complexity is significantly reduced.

4.2 Framework for designing localized samplers

We summarize the localized sampling methods as a general framework. Formally,

consider a classical sampler in the form of a transition kernel

x ∈ P(x0, x), x0 ∈ ϖ0.

Here ϖ0 is the initial distribution or the prior distribution, which is easier to be

sampled from, and P(x0, x) is the sampling kernel that transforms ϖ0 to the target

distribution ϖ. The kernel P is usually a progressive Markov kernel, i.e.

P = P1 ∃ P2 ∃ · · · ∃ PT .

For instance, for unadjusted Langevin algorithm (ULA), the transition kernel is

Pt(x, y) = N(y; x+ 1∝ log ϖ(x), 21I), ↖1 ⇓ t ⇓ T.
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Due to the locality structure, the transition kernel of many samplers can be written

or approximated as

P
loc
t
(x, y) =

∏

i↓[b]

Pt,i(xi, yi | xN r
i
). (4.2.1)

Here we use the block decomposition form, r → Z+ is the localization radius, and

N r

i
is the r-neighborhood (2.1.2). The simplest way to construct (4.2.1) is to take

Pt,i(xi, yi | xN r
i
) as the conditional transition kernel for the i-th component of the

full marginal transition kernel Pt,i(xN r
i
, yN r

i
) obtained by the original sampler on

the marginal distribution ϖ(xN r
i
). The localized SVGD (with time discretization)

and the localized SB sampler can both be fitted into this framework. It can be

observed directly from (4.1.2) and (4.1.3). And we will see in the following two

chapters that the framework also applies to other localized samplers.

The advantanges of the localized sampler (4.2.1) include:

• Localized and parallelizable: to compute Pt,i in the localized sampler, only

local information of x is required (i.e. xN r
i
). This reduces the computational

complexity of the sampler, and also allows parallel implementation. Examples

of local and parallel implementation can be found in Section 5.3.4.

• Lower statistical complexity: the transition kernel is usually learned from

the data, and since the localized sampler is a collection of b low-dimensional

samplers, the sample complexity is significantly reduced compared to the

original sampler. Examples of the statistical analysis of the localized sampler

can be found in Section 6.2.3.

However, the localized sampler will introduce localization error in the sampled

distribution. The localization error can be controlled using the marginal Stein’s

method. Due to the exponential correlation decay in the locality structure, the

localization error typically decays exponentially in the localization radius r. An

example of the localization error analysis can be found in Section 6.2.2. The

exponential decay can also be numerically observed and validated.

We also comment that in practice, we can tune the localization radius r in the

localized sampler to balance the localization error and the statistical error, similar

to the bias-variance trade-o!. We will show both theoretically and numerically

that an appropriate localization radius r can indeed reduce the overall error in the

sampled distribution, see Section 6.2.3 and Section 6.3.
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Chapter 5

Localized Metropolis-adjusted

Langevin Algorithm

In this chapter, we discuss the MALA-within-Gibbs (MLwG) sampler, which is the

localized Metropolis-adjusted Langevin algorithm (MALA). The vanilla MALA, as

a typical Markov chain Monte Carlo (MCMC) method, is slow in high dimensional

problems; the step length of MALA should be 1 = O(d↘1/3) for d dimensional

problems to obtain a non-degenerate acceptance rate. MLwG aims to mitigate

the dimension problem by exploiting the locality structure. By using MALA step

within the Gibbs sampler, the step length of MLwG can be chosen independently of

the dimension d. The acceptance rate and the convergence rate are also guaranteed

to be dimension independent. Through an image deblurring problem, we show

that MLwG can be implemented in a local and parallel way. A dimension-free

approximation result is also discussed.

5.1 MALA-within-Gibbs

5.1.1 Metropolis-adjusted Langevin algorithm

Metropolis-adjusted Langevin algorithm (MALA) [95, 94] samples a target distri-

bution ϖ → P(Rd) by using Langevin dynamics corrected by a Metropolis-Hastings

step. It consists of two steps:

• Langevin step: draw a proposal from the Langevin dynamics, i.e.,

z = x+ 1∝ log ϖ(x) +
⊥
212, 2 ∈ N (0, I),
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• Metropolis step: accept the proposal z with probability

↽(x, z) = min

{
1,

ϖ(z)Q(z, x)

ϖ(x)Q(x, z)

}
,

where we denote the proposal kernel as

Q(x, z) = N(z; x+ 1∝ log ϖ(x), 21I). (5.1.1)

The algorithm is summarized in Algorithm 1.

Algorithm 1 MALA sampler

Input: Initial state x
0 → Rd, step size 1 > 0, number of iterations T .

1: for n = 0 to T ↓ 1 do
2: Draw proposal

z
n = x

n + 1∝ log ϖ(xn) +
⊥
212n, 2

n ∈ N (0, I).

3: Compute acceptance probability (cf. (5.1.1))

↽(xn, zn) = min

{
1,

ϖ(zn)Q(zn, xn)

ϖ(xn)Q(xn, zn)

}
.

4: Draw a uniform random variable 3
n ∈ U [0, 1].

5: if 3
n
< ↽(xn, zn) then

6: Accept the proposal: xn+1 = z
n.

7: else
8: Reject the proposal: xn+1 = x

n.
9: end if
10: end for

Output: Sampled chain {xn}T
n=0.

The transition kernel of MALA is given by

PMALA(x, z) = ↽(x, z)Q(x, z) + ωx(z)

∫
(1↓ ↽(x, z))Q(x, z)dz. (5.1.2)

It can be directly verified that ϖ is the stationary distribution of PMALA. Under

strong log-concavity assumption, it is established in [95] that MALA converges

exponentially fast to the target distribution ϖ.

To obtain a non-degenerate acceptance rate in high dimensional problems, it

is known [94, 89] that the step length 1 should scale as 1 = O(d↘1/3). When

the dimension d is large, the step length 1 becomes small, resulting in a slow
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convergence rate.

5.1.2 MALA-within-Gibbs

MALA-within-Gibbs (MLwG) is a localized version of MALA, which is a Gibbs

sampler with blockwise MALA update. In Gibbs sampling, one draws samples in a

blockwise manner from the conditional distributions of the target distribution. To

be specific, one first determine the block index j in a deterministic or stochastic

way, and then draw a sample x
⇒ s.t.

x
⇒
↘j

= x↘j, x
⇒
j
∈ Pj(xj, x

⇒
j
| x↘j),

and Pj(xj, x⇒j | x↘j) is a transition kernel that is invariant under the conditional

distribution ϖj(xj | x↘j). It is straightforward to verify that ϖ is the stationary

distribution of the Gibbs sampler [49].

In MLwG, Pj is specified as the (block) MALA transition kernel, i.e., one first

draw a proposal z s.t.

z↘j = x↘j, zj = xj + 1∝j log ϖ(x) +
⊥
212j, 2j ∈ N (0, Idj).

Then, one accepts the proposal with probability

↽j(x, z) = min

{
1,

ϖ(z)Qj(zj, xj | x↘j)

ϖ(x)Qj(xj, zj | x↘j)

}
,

where Qj(xj, zj | x↘j) is the proposal kernel for the j-th block

Qj(xj, zj | x↘j) = N(zj; xj + 1∝j log ϖ(xj, x↘j), 21Idj). (5.1.3)

We now establish some notation for MLwG. For simplicity, we consider the

case where the blocks are updated sequentially. Other block updating rules like

randomized sequences could also be employed, but are not discussed here. We

call a complete iteration in which all blocks are updated a cycle and denote by

x
n,j → Rd the state during the n-th cycle before the update of the j-th block. To

illustrate this notation, consider the following presentation of block updates:

x
0 = x

1,1 ⇔ x
1,2 ⇔ · · · ⇔ x

1,b+1
︸ ︷︷ ︸

1st cycle

= x
1 = x

2,1 ⇔ x
2,2 ⇔ · · · ⇔ x

2,b+1
︸ ︷︷ ︸

2nd cycle

= x
2 ⇔ · · ·
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Notice also that we introduce x
n to denote the state after the n-th cycle.

The algorithm is summarized in Algorithm 2.

Algorithm 2 MLwG sampler

Input: Initial state x
0 → Rd, step size 1 > 0, number of iterations N .

1: Set x1,0 = x
0.

2: for n = 1 to N do
3: for j = 1 to b do
4: Draw proposal zn,j s.t. zn,j↘j

= x
n,j

↘j
and

z
n,j

j
= x

n,j

j
+ 1∝j log ϖ(x

n,j) +
⊥
212n,j

j
, 2

n,j

j
∈ N (0, Idj).

5: Compute acceptance probability (cf. (5.1.3))

↽(xn,j, zn,j) = min

{
1,

ϖ(zn,j)Qj(z
n,j

j
, x

n,j

j
| xn,j↘j

)

ϖ(xn,j)Qj(x
n,j

j
, z

n,j

j
| xn,j↘j

)

}
.

6: Draw a uniform random variable 3
n,j ∈ U [0, 1].

7: if 3
n,j

< ↽(xn,j, zn,j) then
8: Accept the proposal: xn,j+1 = z

n,j.
9: else
10: Reject the proposal: xn,j+1 = x

n,j.
11: end if
12: end for
13: Set xn+1,0 = x

n = x
n,b+1.

14: end for
Output: Sampled chain {xn}N

n=0.

Discussions on the implementation strategies, e.g. the choice of step length 1 ,

local and parallel computation in MLwG will be given in Section 5.3.

5.2 Dimensional-free properties

In this section, we show that if the target distribution is localized, the acceptance

rate and the convergence rate of MLwG are independent of the total dimension d.

This allows the step length 1 to be chosen independently of d, which is a significant

improvement over the vanilla MALA (1 = O(d↘1/3)).

Before introducing the main results, we denote for brevity

vj(x) := ∝j log ϖ(x). (5.2.1)
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5.2.1 Acceptance rate

Theorem 5.1. Suppose ϖ → P(Rd) is localized on a (s, ϱ)-local graph G. Assume

↖j → [b], ↘vj↘L↑ ⇓ M, ↘∝vj↘L↑ ⇓ H, |∝vj|Lip ⇓ L.

Then there exists some M > 0 depending only on M,H, L and s, s.t.

E
ξ
n,j
j

[
↽(xn,j, zn,j)

]
↑ 1↓M1

3/2
. (5.2.2)

Remark 5.1. (1) Due to the locality structure, M,H, L are typically dimensional

independent. Since vj = ∝j log ϖ is only a function of xNj , its derivates and itself

are all low-dimensional functions.

(2) These boundedness assumptions are taken from [110]. It usually does not

hold for unbounded support, but it is only introduced for simplicity of analysis and

may not be required in practice. On the other hand, for unbounded support, one

can consider the averaged acceptance rate where xn,j follows from some distribution

that decays fast enough, and a certified lower bound is still obtainable.

(3) The bound in [110] is 1 ↓ M
⊥
1 , and here we improve it to 1 ↓ M1

3/2.

We note that the rate 3/2 is optimal, which can be observed directly from the

asymptotic expansion of the acceptance rate.

Proof of Theorem 5.1. The claim is an immediate result of Lemma 5.1. Consider

aj defined in (5.4.10). By definition, we have

↽(xn,j, zn,j) = min

1, exp(aj(x

n,j
, 2

n,j

j
))
}
,

where z
n,j

j
= x

n,j

j
+ 1vj(xn,j) +

⊥
212n,j

j
. By Lemma 5.1,

1↓ ↽(xn,j, zn,j) = exp
(
min{0, aj(xn,j, 2n,jj

)}
)

⇓ |aj(xn,j, 2n,jj
)| ⇓ 1

3/2(M1 +M2↘2n,jj
↘3).

Therefore, the result follows by taking expectation w.r.t. 2n,j
j

.

5.2.2 Convergence rate

MLwG also guarantees a dimension independent convergence rate for log-concave

localized distributions. To adapt to the block structure, the following blockwise
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log-concave condition is introduced (see Assumption 3.4 in [110]).

Definition 5.1. A distribution ϖ → P(Rd) is called blockwise φH-log-concave

(φH > 0) if there exists a symmetric matrix H → Rb⇐b s.t. H ⊤ φHIb and

↖i, j → [b], i ¬= j,

↖x → Rd
, ∝2

jj
log ϖ(x) ▽ ↓HjjIdj ,

∝2
ij
log ϖ(x)

 ⇓ ↓Hij.

Note in the above defintiion, it is implicitly required that

Hjj ↑ 0; ↖i ¬= j, Hij ⇓ 0.

For more discussions on the blockwise log-concavity, we refer to [110]. In Section 5.3,

we will verify this condition in an image deblurring problem with appropriate

parameter choices.

Now we state the main theorem.

Theorem 5.2. Suppose ϖ → P(Rd) is blockwise φH-log-concave, and is localized

on a (s, ϱ)-local graph G. Assume

↖j → [b], ↘vj↘L↑ ⇓ M, ↘∝vj↘L↑ ⇓ H, |∝vj|Lip ⇓ L.

Then there exist some ↼, 10 > 0 that are independent of d s.t. for all 1 → (0, 10], we

can couple two MLwG chains {xn}⇓
n=0 and {yn}⇓

n=0 s.t.

(∑

j↓[b]

[
E
xn

j
↓ y

n

j

]2
)1/2

⇓ (1↓ ↼1)n
(∑

j↓[b]

[
E
x0

j
↓ y

0
j

]2
)1/2

. (5.2.3)

As a corollary, take y
n ∈ ϖ, and we show that xn converges to ϖ exponentially fast

with dimension independent rate.

Proofs are delayed to Section 5.4.1.

Remark 5.2. (1) The convergence result is based on the maximal coupling of two

MLwG chains as in [110]. In brief, the two chains xn, yn are coupled to share in

each step the same 2n,j
j

in the proposal and the random variable 3n,j ∈ U(0, 1) used
to determine the acceptance of proposals (See Algorithm 2).

(2) Under the locality assumption, the H matrix in the blockwise φ-log-concave

condition can be made to satisfy ↖i ¬∈ j, Hij = 0. We use this condition in the
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proof for simplicity. One can also allow it to be nonzero, and the proof still holds

with minor modifications.

5.3 Application in an image deblurring problem

In this section, we consider applying MLwG to an image deblurring problem. Due

to the use of a total variation (TV) regularization [98, 46], the prior distribution

ϖ0 is non-smooth, and thus one cannot directly use MALA proposal. To address

this, we propose to use a local smoothing of the prior distribution, and then apply

MLwG to the smoothed distribution.

The locality structure in the image deblurring problem guarantees that the

approximation error can be uniformly bounded over the image, and is independent of

the dimension. We will show how to implement an e”cient local and parallel MLwG

sampling algorithm by providing the local target densities and their gradients for

the block updates. More details can be found in [46].

5.3.1 Problem setting

Consider the classic image deconvolution problem with TV regularization, e.g., [87],

and assume that a blurred and noisy image y → Rd is obtained by

y = Axtrue + ◁. (5.3.1)

Here xtrue → Rd is the ‘true’ image, ◁ ∈ N(0,φ↘1
Id), and A → Rd⇐d is the convolution

operator. For instance, one can construct A via the discrete point spread function

(PSF). Assume that the discrete PSF has radius r > 0, then Ax convolves each

pixel with the surrounding (2r + 1)2 pixels.

The inverse problem of (5.3.1) is to recover a solution that is close to xtrue

from the data y. Computing a solution is typically not straightforward due to

the ill-posedness of the problem. For this reason, we employ the edge-preserving

TV regularization introduced in [98], which is a commonly used regularization

technique in image reconstruction. For discretized images, it reads

↘x↘TV =
d∑

s=1

√
(D(v)

s x)2 + (D(h)
s x)2,

where D
(v) → Rd⇐d and D

(h) → Rd⇐d are finite di!erence matrices cooresponding to
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the vertical and horizontal di!erences of the pixels resp. Specifically,

D
(v) = In ℵDn,

D
(h) = Dn ℵ In,

where Dn =





↓1 1

↓1 1
. . . . . .

↓1 1

↓1





[n⇐n]

.

Here n =
⊥
d and ℵ denotes the Kronecker product. Note we use Dirichlet boundary

conditions for the finite di!erence matrices. Other boundary conditions can be

used by slight modification of the algorithm and the analysis. For simplicity, we

only consider square images with uniform block decomposition, i.e.

• Image is of size n↗ n pixels, and thus d = n
2.

• Image is equally divided into b = b
2 number of m↗m blocks. Here n = bm.

We now formulate the Bayesian inverse problem. The prior distribution is given

by the TV regularization, i.e. the TV prior

ϖ0(x) △ exp (↓µ ↘x↘TV) ,

where µ > 0 is some fixed parameter that controls the strength of the regularization.

The likelihood function is determined by the model (5.3.1), i.e.

ϖ(y|x) △ exp

(
↓φ

2
↘y ↓ Ax↘22

)
.

The posterior distribution is then given by

ϖ(x) := ϖ(x|y) △ exp (↓l(x)↓ 00(x)) ,

l(x) =
φ

2
↘y ↓ Ax↘22 , 00(x) = µ ↘x↘TV .

(5.3.2)

Here we omit the dependence on y as it is fixed in the sampling task.

5.3.2 Posterior smoothing with dimension-free error

Since MLwG requires the gradient of the log density, we propose to approximate

the non-smooth ϖ in (5.3.2) by a smooth one ϖε. We show that the error between
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ϖ and ϖε is uniformly distributed among all the components, leading to a local

dimension-independent error on the marginal distribution of any block xi.

The non-smoothness of ϖ originates from the potential 00 (cf. (5.3.2)). Hence,

we replace 00 with a smoothed potential 0ε for some small ε > 0, such that 0ε ⇔ 00

as ε ⇔ 0. Various smoothing methods are possible, but it is crucial to ensure that

the introduced error remains small. Here we consider the following approximation

0ε(x) := µ

d∑

s=1

√
(D(v)

s x)2 + (D(h)
s x)2 + ε. (5.3.3)

Thus the smoothed posterior density becomes

ϖε(x) △ exp

(
↓φ

2
↘y ↓ Ax↘22 ↓ µ

d∑

s=1

√
(D(v)

s x)2 + (D(h)
s x)2 + ε


. (5.3.4)

As we modify 00, which is a function in Rd, the distance between ϖ and ϖε in

general depends on the dimension d. For instance, one can show KL(ϖ↘ϖε) = O(dε).

However, when examining the marginals of ϖ and ϖε over small blocks xj, we can

show that the approximation error is dimension-independent with the help of the

marginal transport inequality. We comment that such dimension independence is

crucial for solving the image deblurring problem. It ensures that the smoothing

error is evenly distributed across the image, rather than concentrating on certain

pixels and creating unwanted artifacts in the image.

In light of Theorem 3.3, the key to is to verify that ϖε is ω-localized. We

will mainly use Theorem 3.2, and we introduce some diagonal block dominance

condition imposed on C = A
T
A.

Definition 5.2. A matrix C → Rd⇐d is called c-diagonal block dominant for

some c > 0, if there exists a symmetric matrix M → Rb⇐b s.t. ↖i, j → [b], i ¬= j,

Cjj ⊤ MjjIdj , ↘Cij↘2 ⇓ Mij,

∑

k:k ↔=j

Mjk + c ⇓ Mjj.

Remark 5.3. Definition 5.1 introduces a blockwise log-concavity condition similar

to Definition 5.2. The c-diagonal block dominance here can be viewed as an ϑ1

version of the blockwise log-concavity condition (which is an ϑ2 condition).

Now we state the main theorem.
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Theorem 5.3. Consider the target distribution ϖ (5.3.2) and its smooth approxi-

mation ϖε (5.3.4). Assume that AT
A is c-diagonal block dominant (Definition 5.2).

Suppose ϑ

µ
↑ 36m

c
∝
ε
. Then there exists a dimension-independent constant C s.t.

max
j

W1(ϖj, ϖε,j) ⇓ Cε. (5.3.5)

Proofs are delayed to Section 5.4.2.

5.3.3 Dimension-free acceptance rate and convergence rate

In the following, we present two results, which show that the acceptance rate and

convergence rate of MLwG for the smoothed distribution ϖε are independent of the

dimension d. Since they are direct application of Theorem 5.1 and Theorem 5.2,

we only state the results here.

Proposition 5.1. Suppose A is bounded in the sense that ⇑CA > 0 s.t.

↖i, j → [b], ↘Aij↘ ⇓ CA. (5.3.6)

Then the acceptance rate of the MLwG proposal for ϖε is bounded below by

E
ξ
n,j
j

[
↽(xn,j, zn,j)

]
↑ 1↓M1

3/2
.

Here M is a dimension-independent constant depending only on m,CA,φ, µ, ε, and

maxj ↘[Axk,j ↓ y]j↘.

Remark 5.4. Here the lower bound depends on the state of x through the term

maxj ↘[Axk,j ↓ y]j↘. However, since the pixels values are bounded in practice, this

term is usually also bounded and dimension-independent.

Proposition 5.2. Suppose A is bounded as in (5.3.6), AT
A is c-diagonally block

dominant, and ϑ

µ
↑ 36m

c
∝
ε
. Then there exist some ↼, 10 > 0 that are independent of d

s.t. for all 1 → (0, 10], we can couple two MLwG chains {xn}⇓
n=0 and {yn}⇓

n=0 s.t.

(∑

j↓[b]

[
E
xn

j
↓ y

n

j

]2
)1/2

⇓ (1↓ ↼1)n
(∑

j↓[b]

[
E
x0

j
↓ y

0
j

]2
)1/2

.

As a corollary, take y
n ∈ ϖ, and we show that xn converges to ϖ exponentially fast

with dimension independent rate.
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5.3.4 Local and parallel algorithm

Since the convolution operator A has a small radius r, and the di!erence operator

D
(v)
, D

(h) are local, the posterior distribution ϖε is localized. We denote some

notations to describe the locality structure.

• Ii ↔ [d] denotes the index set of pixels in the i-th block.

• For s, t → [d], denote s ∈ t if 42
st
log ϖε(x) ↙ 0.

• )i = {t : ⇑s → Ii, t ∈ s} denote the index set of all the pixels that are

neighbors of the i-th block.

In the (n, j)-th step of the MLwG algorithm (see Algorithm 2), we introduce the

local negative log-density:

l
n,j

loc (xj|x
n,j

↘j
) :=

φ

2

∑

s↓”j

ys ↓ Asjxj ↓ As,↘jx
n,j

↘j


2

+ µ

∑

s↓”j

√
(D(v)

s,j
xj +D

(v)
s,↘j

x
n,j

↘j
)2 + (D(h)

s,j
xj +D

(h)
s,↘j

x
n,j

↘j
)2 + ε.

Note by definition,

↖t /→ )j, 4
x
n,j
t
l
n,j

loc (xj|x
n,j

↘j
) = 0.

Therefore, computing l
n,j

loc (xj|x
n,j

↘j
) does not require x[d]\”j

. This allows for local

and parallel implementation of MLwG. To be specific, note

∝j log ϖε(x
n,j) = ↓∝l

n,j

loc (x
n,j

j
|xn,j↘j

).

So that one can use the proposal

z
n,j

j
= x

n,j

j
↓ 1∝l

n,j

loc (x
n,j

j
|xn,j↘j

) +
⊥
212n,j

j
, 2

n,j

j
∈ N (0, Idj),

which does not involve x
n,j

[d]\”j
. Similarly, to compute the acceptance rate, one uses

↽(xn,j, zn,j) = min

{
1,

exp(↓l
n,j

loc (z
n,j

j
|xn,j↘j

))Qj(z
n,j

j
, x

n,j

j
| xn,j↘j

)

exp(↓l
n,j

loc (x
n,j

j
|xn,j↘j

))Qj(x
n,j

j
, z

n,j

j
| xn,j↘j

)

}
,

where logQj(x
n,j

j
, z

n,j

j
| xn,j↘j

) = ↓ 1

41

zn,jj
↓ x

n,j

j
+ 1∝l

n,j

loc (x
n,j

j
|xn,j↘j

)

2
+ const.

And this can also be computed locally.
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The local implementation facilitates updating several blocks in parallel during

the loop over j in Algorithm 2. We define a parallel scheme via the index sets

Ul ↔ [b], l = 1, . . . , L,

s.t. ↖l, ↖i, j → Ul, )i ∀)j = ⫅̸.

So that blocks in Ul can be updated in parallel. The choices {Ul}l↓[L] are not

unique, and one can find parallel scheme with L = 4 for the imaging deblurring

problem. An example of a parallel updating schedule is illustrated in Figure 5.1.

Figure 5.1: Block decomposition: example of a parallel scheme with 16 blocks.

For more details on the local and parallel algorithm, we refer to Section 5 in

[46].

5.3.5 Numerical examples

We use the Cameraman image as the testing example. Figure 5.2 shows the true

image and the blurred and noised image, which is obtained via the observation model

(5.3.1). Here we take A corresponds to the discretization of a Gaussian blurring

kernel with radius 8 and standard deviation 8. The noise is ◁ ∈ N(0, 10↘4 · I).
To solve the deblurring problem, we use MLwG to sample from the smoothed

posterior distribution ϖε (5.3.4). We first check the e!ect of di!erent choices of

the smoothing parameter ε on the sampling performance. Second, we will verify

numerically the dimension-independent acceptance rate and convergence rate of

MLwG. Finally, we compare MLwG to MALA and show that the local and parallel
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Figure 5.2: Image deblurring problem: Cameraman. Left: Cameraman image and
partition into di!erent sizes (red frames). All sections are again partitioned into
blocks of equal size 64 ↗ 64 (white frames). Right: Data obtained via Gaussian
blur and additive Gaussian noise.

implementation outperforms MALA in increasing dimension in terms of both

sample quality and wall-clock time.

In each experiment, we generate 5 independent chains of 2000 samples each,

and apply thinning by recording every 200-th sample to reduce autocorrelation.

We check our sample chains for convergence by means of the potential scale

reduction factor (PSRF) [48], which compares the within-variance to the in-between

variance of the chains. Empirically, one considers sample chains to be converged

if PSRF< 1.1. We also compute the normalized e!ective sample size (nESS) and

credible intervals (CIs), see for instance [82] for definitions.

To determine the hyperparameter µ in (5.3.2), we use the adaptive total variation

approach in [85], and obtain µ = 35.80 for the 512↗ 512 image. We use this choice

for all other problem sizes as well.

Influence of ε We compute MAP estimates for ε → {10↘3
, 10↘5

, 10↘7} with the

majorization-minimization algorithm proposed in [108] and show the results in

the left column of Figure 5.3. We can see that the restoration from ε = 10↘3

has smoother edges than the other two restorations which exhibit the typical

cartoon-like structure of TV-regularized images. Further, the di!erence between

the results from ε = 10↘5 and 10↘7 is hardly visible.
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Figure 5.3: Image deblurring problem: influence of ε. MAP estimate, MLwG
sample mean, and widths of the 90% sample CIs for ε → {10↘3

, 10↘5
, 10↘7}.

85



Then we run MLwG for di!erent ε with a diminishing step size adaptation

during burn-in [78] targeting an acceptance rate of 0.547 in each block (see [94]).

We show the sample means and widths of the 90% sample CIs in Figure 5.3. Here

the sample means of ε = 10↘5 and 10↘7 are visually more favorable than their

corresponding MAP estimates. In contrast, the result of ε = 10↘3 contains visible

artifacts. Moreover, the 90% sample CI di!erence is in general wider for ε = 10↘3

than for ε = 10↘5 and ε = 10↘7. However, the width of the 90% sample CIs are

rather similar on the edges.

We show some quantitative results in Table 5.1. Here we note that ε = 10↘3

allows for a significantly larger mean step size in comparison to ε = 10↘5 or 10↘7.

This results in less correlated samples, which is reflected in a larger nESS.

ϑ min nESS [%] ϖ [10-6] ϱ [%] max PSRF med PSRF

10↘3 13.3 25.8 54.7 1.01 1.00

10↘5 3.2 7.5 54.4 1.03 1.00

10↘7 2.1 5.6 54.3 1.04 1.00

Table 5.1: Image deblurring problem: influence of ε. Sampling results of MLwG

for ε → {10↘3
, 10↘5

, 10↘7}. Here min nESS is the pixel-wise minimum of the mean

nESS averaged over the 5 chains. The step size 1 and acceptance rate ↽ are

averaged over all blocks and the 5 chains. The maximum and median PSRF are

with respect to the pixels.

We conclude that relatively large values of ε make the posterior density smoother,

allowing for larger step sizes and thus making the sampling more e”cient in terms of

nESS. However, at the same time, the results can be visually significantly di!erent

compared smaller ε that yields sharper edges. Based on these observations, and

since the results for ε = 10↘5 and 10↘7 are very close, we will fix ε = 10↘5 in the

remaining experiments.

Dimension-independent acceptance rate To test the dimension-independent

block acceptance rate, we partition the original 512↗ 512 image into 4 sections of

sizes 128↗ 128, 256↗ 256, 384↗ 384 and 512↗ 512. Furthermore, each section

is partitioned into blocks of equal size 64↗ 64. Thus the number of blocks in the

sections of di!erent sizes are 4, 16, 36, and 64 resp. The 4 deblurring problems are
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shown on the left in Figure 5.2.

We run MLwG with a step size of 1 = 7.44↗ 10↘6 on the 4 deblurring problems

with di!erent sizes. The step size is taken from a pilot run on the 512↗512 problem

by targeting an acceptance rate of 0.547 in each block and then taking the average

of all block step sizes. For all problem sizes, we use a burn-in period of 31, 250

samples. We plot the acceptance rate for each block in Figure 5.4 and see that the

block acceptance rates are indeed dimension-independent.

Figure 5.4: Image deblurring problem: acceptance rate. Block acceptance rates
(%) of MLwG for di!erent problem sizes, listed according to the problem sizes in
the order shown on the right.

Comparison to MALA In this part, we compare the performance of MLwG

with vanilla MALA. For MALA, we use again the diminishing step size adaptation

from [78] during burn-in, where we target an acceptance rate of 0.547. The numbers

of burn-in samples are listed in Table 5.2 and are chosen such that they increase

linearly with the problem size. For MLwG, we use the same setting as in the

previous tests.

We compare the sampling performance of MALA and MLwG in Table 5.2.

In general, MLwG yields much larger nESS than MALA because it allows for a

larger step size. Furthermore, the nESS of MLwG becomes even larger as the
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problem size increases. We attribute this to the diminishing constraining e!ect

of the boundary condition associated with the convolution operator on the inner

blocks as the dimension increases. In addition, we note that for the given burn-in,

MALA does not converge for the problem sizes 384↗ 384 and 512↗ 512, since the

corresponding max PSRF> 1.1.

Problem size 128×128 256×256 384×384 512×512

min nESS [%]
MLwG 2.6 2.8 2.9 3.0

MALA 1.4 0.8 0.6 0.4

ϖ [10-6]
MLwG 7.4 7.4 7.4 7.4

MALA 4.8 2.5 1.8 1.4

ϱ [%]
MLwG 60.8 57.7 55.5 54.3

MALA 54.0 54.3 54.7 55.0

burn-in [103]
MLwG 31.250 31.250 31.250 31.250

MALA 125.000 500.000 1125.000 2000.000

max PSRF
MLwG 1.03 1.03 1.03 1.03

MALA 1.06 1.08 1.20 1.20

Table 5.2: Comparison of MLwG and MALA for di!erent problem dimensions. The
min nESS is the pixel-wise minimum of the mean nESS taken over the 5 chains.
For MLwG, the shown step size 1 and acceptance rate ↽ are the means taken over
all blocks and the 5 chains. The maximum PSRF is with respect to the pixels.

Notice that the results from Table 5.2 also validate the dimension-independent

convergence rate in Proposition 5.2 of MLwG. This is because MLwG produces

roughly the same PSRF for all problem sizes with the same burn-in steps. In

contrast, MALA requires significantly more burn-in steps with increasing dimension.

Finally, we compare the wall-clock and CPU time of the sample chains of MLwG

and MALA. All chains are run on the same hardware, Intel® Xeon® E5-2650 v4

processors. Furthermore, we use the optimal number of cores for MLwG, such that

all blocks with indices i → Ul can be updated in parallel (see Section 5.3.4).

We show the computing times in seconds per 1000 samples in Figure 5.5 and

observe that the wall-clock time of MLwG remains almost constant and does not

increase with the problem dimension. This is because the main computational e!ort

of updating the 64↗ 64 blocks on each core remains constant and only more time is

required for handling the increasing number of cores by the main process. For small

problem sizes, the wall-clock time of MLwG is longer than that of MALA, because
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of the overhead of the parallelized implementation and the additional convolutions

of fixed pixels in the local block likelihoods. However, since several updates are run

in parallel in MLwG, its wall-clock time is eventually shorter than that of MALA,

see the time for problem size 512 ↗ 512. Note that the total wall-clock time of

MALA is actually significantly larger, since it requires much more burn-in. The

benefits of MLwG obviously come at the cost of CPU time, which increases linearly

with the number of cores.

Figure 5.5: Image deblurring problem: wall-clock and CPU time of MLwG and
MALA. For MLwG, we show the mean ± the standard deviation by means of the
shaded area. The wall-clock and CPU time of MALA are approximately equal and
are therefore not displayed separately. For MLwG, we used the number of cores
indicated in the x-tick labels plus one additional core to handle the main process.

5.4 Proofs

5.4.1 Proof of Theorem 5.2

Proof of Theorem 5.2. Consider the maximal coupling of two MLwG chains xn,j

and y
n,j, where the two chains share the same 2

n,j

j
and 3

n,j in Algorithm 2 for all

n, j. The proof is divided into two parts: (i) derive the coupling inequality for one

MALA step, and (ii) derive the contraction of one cycle.
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Before the proof, we denote the filtration

Fn,j = span

x
0
, y

0
, 2

k,i

i
, 3

k,i | ↖k < n, ↖i or k = n, ↖i < j

}
.

Accordingly, denote En,j as the conditional expectation w.r.t. Fn,j.

I. One MALA step analysis. Denote the proposals for the two chains as

z
n,j

↘j
= x

n,j

↘j
, z

n,j

j
= x

n,j

j
+ 1vj(x

n,j) +
⊥
212n,j

j
,

w
n,j

↘j
= y

n,j

↘j
, w

n,j

j
= y

n,j

j
+ 1vj(y

n,j) +
⊥
212n,j

j
.

Depending on the acceptance of the proposals, we denote the events

• 12: both proposals are accepted.

• 1x or 1y: only one proposal (x or y) is accepted.

• 10: both proposals are rejected.

By definition, we can decompose

En,j↘xn,j+1
j

↓ y
n,j+1
j

↘

= E
ξ
n,j
j ,▷n,j↘xn,j+1

j
↓ y

n,j+1
j

↘

= E
ξ
n,j
j


E▷n,j [12] · ↘zn,jj

↓ w
n,j

j
↘

+ E

ξ
n,j
j


E▷n,j [10] · ↘xn,jj

↓ y
n,j

j
↘


+ E
ξ
n,j
j


E▷n,j [1x] · ↘zn,jj

↓ y
n,j

j
↘+ E▷n,j [1y] · ↘xn,jj

↓ w
n,j

j
↘

.

(5.4.1)

From now on, we omit for simplicity the superscript n, j in the notation. For the

case where both proposals are accepted, denote 5t = (1↓ t)x+ ty, t → [0, 1], and

we have

zj ↓ wj = xj ↓ yj + 1(vj(x)↓ vj(y))

= xj ↓ yj + 1

∑

i↓[b]

∫ 1

0
∝ivj(5t)(xi ↓ yi)dt

=

(
I + 1

∫ 1

0
∝jvj(5t)dt

)
(xj ↓ yj) + 1

∑

i:i ↔=j

∫ 1

0
∝ivj(5t)(xi ↓ yi)dt.

Since ϖ is blockwise φ-log-concave, by definition we have

∝jvj(5t) ▽ ↓HjjIdj , ↘∝ivj(5t)↘ ⇓ ↓Hij (↖i ¬= j).

90



Therefore, if 1 < H
↘1
jj

, we obtain that

↘zj ↓ wj↘ ⇓ (1↓ 1Hjj) ↘xj ↓ yj↘ ↓ 1

∑

i:i ↔=j

Hij ↘xi ↓ yi↘

= ↘xj ↓ yj↘ ↓ 1

∑

i↓[b]

Hij ↘xi ↓ yi↘ .
(5.4.2)

For the case where only one proposal is accepted, we have

↘zj ↓ yj↘ ⇓ ↘xj ↓ yj↘+ 1 ↘vj(x)↘+
⊥
21 ↘2j↘ .

Similarly for ↘xj ↓ wj↘. So that we have

max {↘zj ↓ yj↘ , ↘xj ↓ wj↘} ⇓ ↘xj ↓ yj↘+ 1M+
⊥
21 ↘2j↘ . (5.4.3)

Therefore, combining (5.4.1) (5.4.2) and (5.4.3), we have

LHS ⇓ Eξj [E▷ [12]] ·



↘xj ↓ yj↘ ↓ 1

∑

i↓[b]

Hij ↘xi ↓ yi↘





+ Eξj [E▷ [10] · ↘xj ↓ yj↘]

+ Eξj


(E▷ [1x] + E▷ [1y]) ·


↘xj ↓ yj↘+ 1M+

⊥
21 ↘2j↘



= ↘xj ↓ yj↘ ↓ 1Eξj [E▷ [12]] ·
∑

i↓[b]

Hij ↘xi ↓ yi↘

+ Eξj


(E▷ [1x] + E▷ [1y]) ·


1M+

⊥
21 ↘2j↘


.

(5.4.4)

Here we use the fact that 12 + 1x + 1y + 10 ↙ 1. By definition of the acceptance

probability, we have

1↓ E▷ [12] ⇓ 1↓ ↽(x, z) + 1↓ ↽(y, w).

E▷ [1x] + E▷ [1y] = |↽(x, z)↓ ↽(y, w)| .

Recall the definition of aj in (5.4.10). By Lemma 5.1, we have

1↓ ↽(x, z) + 1↓ ↽(y, w)

= 1↓ exp (min{0, aj(x, 2)}) + 1↓ exp (min{0, aj(y, 2)})

⇓ |aj(x, 2)|+ |aj(y, 2)| ⇓ 21 3/2(M1 +M2↘2j↘3).
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|↽(x, z)↓ ↽(y, w)| = |exp (min{0, aj(x, 2)})↓ exp (min{0, aj(y, 2)})|

⇓ |aj(x, 2)↓ aj(y, 2)|

⇓ 1(M3 +M4↘2j↘2)
∑

k↓Nj

↘xk ↓ yk↘.

So that

1 ↑ Eξj [E▷ [12]] ↑ Eξj


1↓ 1

3/2(M1 +M2↘2j↘3)

= 1↓ C11

3/2
.

Eξj [(E▷ [1x] + E▷ [1y])] ⇓ Eξj



1(M3 +M4↘2j↘2)
∑

k↓Nj

↘xk ↓ yk↘





⇓ C21

∑

k↓Nj

↘xk ↓ yk↘.

Eξj [(E▷ [1x] + E▷ [1y]) · ↘2j↘] ⇓ Eξj



1(M3 +M4↘2j↘2) ↘2j↘
∑

k↓Nj

↘xk ↓ yk↘





⇓ C31

∑

k↓Nj

↘xk ↓ yk↘.

Notice Hjj ↑ 0 and Hij ⇓ 0 if i ¬= j, so that pluging the above inequalities into

(5.4.4), we have

LHS ⇓ ↘xj ↓ yj↘ ↓ 1Hjj

(
1↓ C11

3/2
)
↘xj ↓ yj↘ ↓ 1

∑

i:i ↔=j

Hij ↘xi ↓ yi↘

+
(
C21

2
M+ C31

⊥
21

) ∑

k↓Nj

↘xk ↓ yk↘.

Therefore, for some C, we proved that

En,j↘xn,j+1
j

↓ y
n,j+1
j

↘ ⇓ ↘xn,j
j

↓ y
n,j

j
↘ ↓ 1

∑

i↓[b]

Hij↘xn,ji
↓ y

n,j

i
↘

+ C1
3/2

∑

k↓Nj

↘xn,j
k

↓ y
n,j

k
↘.

(5.4.5)

II. Contraction in one cycle. By definition,

x
n,k

j
=





x
n↘1
j

, if k ⇓ j,

x
n

j
, if k > j.
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Similarly for yn,k
j

. Denote the error vector en → Rb s.t.

e
n

j
:= ↘xn

j
↓ y

n

j
↘.

Taking expectation on (5.4.5), and replacing ↘xn
j
↓ y

n

j
↘ by e

n

j
, we have

E[en
j
] ⇓ E[en↘1

j
]↓ 1

∑

i:i<j

HijE[eni ]↓ 1

∑

i:i→j

HijE[en↘1
i

]

+ C1
3/2

∑

k↓Nj ,k<j

E[en
k
] + C1

3/2
∑

k↓Nj ,k→j

E[en↘1
k

].

Denote the matrices HL
,H

U
,G

L
,G

U as

H
L
ij
= Hij1i<j, H

U
ij
= Hij1i→j, G

L
ij
= C1i≃j1i<j, G

U
ij
= C1i≃j1i→j. (5.4.6)

Then the above inequality can be written in a matrix form

(
I + 1H

L ↓ 1
3/2

G
L
)
E[en] ⇓

(
I ↓ 1H

U + 1
3/2

G
U
)
E[en↘1].

Here ⇓ is defined in the elementwise sense. When 1 < ↘HL ↓ 1
1/2

G
L↘↘1, we have

the Neumann series identity

(
I + 1H

L ↓ 1
3/2

G
L
)↘1

=
⇓∑

k=0

(
↓1H

L + 1
3/2

G
L
)k

.

Note the right hand side consists only of (entrywise) positive matrices, so that

E[en] ⇓
(
I + 1H

L ↓ 1
3/2

G
L
)↘1 (

I ↓ 1H
U + 1

3/2
G

U
)
E[en↘1].

We prove in Lemma 5.2 that there exists ↼, 10 > 0 s.t. if 1 < 10, we have


(
I + 1H

L ↓ 1
3/2

G
L
)↘1 (

I ↓ 1H
U + 1

3/2
G

U
)

2

⇓ 1↓ ↼1.

So that viewing E[en] as a vector, we have

↘E[en]↘ ⇓ (1↓ ↼1)
E[en↘1]

 ̸ ↘E[en]↘ ⇓ (1↓ ↼1)n
E[e0]

 .

This completes the proof.
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5.4.2 Proof of Theorem 5.3

Proof of Theorem 5.3. We first prove that ϖε is ω-localized with ω = 2
ϑc
. Notice

∝2 log ϖε(x) = ↓φA
T
A↓∝2

0ε(x).

Since AT
A is c-diagonal block dominant, there exists a c-diagonal dominant matrix

M → Rb⇐b s.t. AT
A(j, j) ⊤ MjjIdj . By Lemma 5.3, ∝2

0ε ⊤ 0, and thus

↓∝2
jj
log ϖε(x) ⊤ φMjjIdj .

For i ¬= j, note
AT

A(i, j)
 ⇓ Mij, and by (5.4.17) in Lemma 5.3,

∝2
ij
log ϖε(x)

 ⇓ φ
AT

A(i, j)
+

∝2
ij
0ε(x)



⇓ Mij + 4mµε
↘1/21i≃j + µε

↘1/21(i,j)↓#,

where & is defined in (5.4.18). Therefore, denote M̃ → Rb⇐b s.t.

M̃ij = φMij + 4mµε
↘1/21dG(i,j)=1 + µε

↘1/21(i,j)↓#,

and notice ↖j → [b], since M is c-diagonal dominant, we have

M̃jj ↓
∑

i:i ↔=j

M̃ij = φ



Mjj ↓
∑

i:i ↔=j

Mij



↓ (16m+ 2)µε↘1/2

↑ φc↓ (16m+ 2)µε↘1/2 ↑ φc/2.

Here we use ϑ

µ
↑ 36m

c
∝
ε
. By Theorem 3.2, ϖε is

2
ϑc
-localized. So that by Theorem 3.3,

max
j

W1(ϖj, ϖε,j) ⇓
2

φc
max

i

Eω ↘∝i log ϖε ↓∝i log ϖ↘ . (5.4.7)

By (5.4.19) in Lemma 5.3, we have

Eω ↘∝i log ϖε ↓∝i log ϖ↘ = Eω ↘∝i0ε ↓∝i00↘

⇓ Eω

∑

t in i

µ

∑

s:s≃t



1↓ ↘Dsx↘√
↘Dsx↘2 + ε





⇓ 4m2
µmax

s

Eω



1↓ ↘Dsx↘√
↘Dsx↘2 + ε



 .

(5.4.8)
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Denote the function Is(t) := Eω

[
1↓ ↗Dsx↗⊥

↗Dsx↗2+t2

]
. Then Is(0) = 0 and

I
⇒
s
(t) = Eω




↘Dsx↘ t

(
↘Dsx↘2 + t2

)3/2



 ⇓ Eω




↘Dsx↘2 + t

2

2
(
↘Dsx↘2 + t2

)3/2





⇓ 1

2
Eω

[(
↘Dsx↘2 + t

2
)↘1/2

]
⇓ 1

2
Eω ↘Dsx↘↘1

.

By Lemma 5.4, there exists a dimension-independent constant Cω s.t.

max
s

Eω ↘Dsx↘↘1 ⇓ Cω.

This implies that I ⇒
s
(t) ⇓ Cω/2 ̸ Is(t) ⇓ Cωt/2. So that

max
s

Eω



1↓ ↘Dsx↘√
↘Dsx↘2 + ε



 ⇓ 1

2
Cωε

1/2
. (5.4.9)

Combine (5.4.7) (5.4.8) and (5.4.9), we have

max
j

W1(ϖj, ϖε,j) ⇓
2

φc
· 4m2

µ · 1
2
Cωε

1/2 ⇓ 1

9
Cωmε.

Here we use ϑ

µ
↑ 36m

c
∝
ε
. This completes the proof.

5.4.3 Lemmas

Lemma 5.1. Denote the function aj : Rd ↗ Rdj ⇔ R, s.t.

aj(x, 2) = log
ϖ(z)Qj(zj, xj | x↘j)

ϖ(x)Qj(xj, zj | x↘j)
, (5.4.10)

where zj = xj + 1vj(x) +
⊥
212 and z↘j = x↘j. Under the assumptions in Theo-

rem 5.1, it holds that for 0 < 1 ⇓ 1, there exists Mi (i = 1, 2, 3, 4) depending only

on M,H, L and s, s.t.

|aj(x, 2)| ⇓ 1
3/2(M1 +M2 ↘2↘3). (5.4.11)

↘∝xaj(x, 2)↘ ⇓ 1(M3 +M4 ↘2↘2). (5.4.12)
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Moreover, ↖k /→ Nj, ∝xkaj(x, 2) = 0. As a result, we have

|aj(x, 2)↓ aj(y, 2)| ⇓ 1(M3 +M4 ↘2↘2)
∑

k↓Nj

↘xk ↓ yk↘ . (5.4.13)

Proof. By definition of aj and note zj ↓ xj = 1vj(x) +
⊥
212,

aj(x, 2) = log ϖ(z)↓ log ϖ(x)↓ 1

41


↘xj ↓ zj ↓ 1vj(z)↘2 ↓ ↘zj ↓ xj ↓ 1vj(x)↘2



= log ϖ(z)↓ log ϖ(x)↓
⊥
21

2
≃vj(z) + vj(x), 2⇐ ↓

1

4
↘vj(z) + vj(x)↘2 .

Note z ↓ x = (0, . . . , 0, zj ↓ xj, 0, . . . , 0). By Taylor expansion, we have

log ϖ(z)↓ log ϖ(x)

= v(x)T(z ↓ x) +
1

2
∝v(x) : (z ↓ x)↑2 +

1

6
∝2

v(51) : (z ↓ x)↑3

= vj(x)
T(zj ↓ xj) +

1

2
∝jvj(x) : (zj ↓ xj)

↑2 +
1

6
∝2

jj
vj(51) : (zj ↓ xj)

↑3

=
⊥
21vj(x)

T
2 + 1 ↘vj(x)↘2 + 12

T∝jvj(x)2 +O(1 3/2).

Similarly, we have

vj(z) = vj(x) +∝jvj(x)(zj ↓ xj) +
1

2
∝2

jj
vj(52) : (zj ↓ xj)

↑2

= vj(x) +
⊥
21∝jvj(x)2 +O(1).

Therefore,

⊥
21

2
≃vj(z) + vj(x), 2⇐ =

⊥
21vj(x)

T
2 + 12

T∝jvj(x)2 +O(1 3/2).

1

4
↘vj(z) + vj(x)↘2 = 1 ↘vj(x)↘2 +O(1 3/2).

Combine these equations, and notice O(
⊥
1 ) and O(1 ) terms cancel out, we obtain

a(x, 2) = O(1 3/2).

And this term only depends on

vj(x)
↑3
, 2

↑3
, ∝jvj(x), ∝2

jj
vj(51),∝2

jj
vj(52).
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Therefore, one can show that

|a(x, 2)| ⇓ 1
3/2(M1 +M2 ↘2↘3).

This proves (5.4.11). For (5.4.12), notice ∝xz = I + 1∝vj(x), and thus

∝xaj(x, 2)

= (I + 1∝vj(x)) v(z)↓ v(x)↓
⊥
21

2
[(I + 1∝vj(x))∝vj(z) +∝vj(x)] 2

↓ 1

2
[(I + 1∝vj(x))∝vj(z) +∝vj(x)] (vj(z) + vj(x))

= v(z)↓ v(x)↓ 1

2
(∝vj(z) +∝vj(x))

(
1vj(x) +

⊥
212

)

+ 1∝vj(x)v(z)↓
⊥
21

2
1∝vj(x)∝vj(z)2

↓ 1

2
[(I + 1∝vj(x))∝vj(z) +∝vj(x)] vj(z)↓

1
2

2
∝vj(x)∝vj(z)vj(x).

Denote yt = (1↓ t)x+ tz and g(t) = v(yt), and we have

g
⇒(t) = (∝v(yt))

T(z ↓ x) = ∝vj(yt)(zj ↓ xj).

Recall zj ↓ xj = 1vj(x) +
⊥
212,

v(z)↓ v(x)↓ 1

2
(∝vj(z) +∝vj(x))

(
1vj(x) +

⊥
212

)

= g(1)↓ g(0)↓ 1

2
(g⇒(1) + g

⇒(0)) .

Therefore,

v(z)↓ v(x)↓ 1

2
(∝vj(z) +∝vj(x))

(
1vj(x) +

⊥
212

)

= sup
↗w↗=1

w
T

[
g(1)↓ g(0)↓ 1

2
(g⇒(1) + g

⇒(0))

]

⇓ sup
↗w↗=1

max
t↓[0,1]

1

12

wT
g
⇒⇒(t)

 ⇓ max
t↓[0,1]

1

12
↘g⇒⇒(t)↘

=
1

12
max
t↓[0,1]

∝(∝jvj)(yt) : (zj ↓ xj)
↑2
 ⇓ L

12
↘zj ↓ xj↘2 .
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Here we use a classical numerical analysis result:

f(1)↓ f(0)↓ 1

2
(f ⇒(1) + f

⇒(0))

 ⇓
1

12
max
t↓[0,1]

|f ⇒⇒(t)| .

Finally, we have

↘∝xaj(x, 2)↘ ⇓ L

12

1vj(x) +
⊥
212


2
+ 1


HM+ 1

1/2
H
2 ↘2↘+ HM+ 1H

2
M



⇓ L

6

(
1
2
M

2 + 21 ↘2↘2
)
+ 1


2HM+ 2H2

(
1 + 1 ↘2↘2

)
+ 1H

2
M


.

This proves (5.4.12). For the last claim, notice for k /→ Nj,

∝kvj(x) = ∝2
jk
log ϖ(x) ↙ 0.

Therefore, ∝xkz = ∝xkx, and we have

∝xkaj(x, 2) = vk(z)↓ vk(x) =

∫ 1

0
∝jvk(yt)(zj ↓ xj)dt = 0.

Finally, since aj(·, 2) is only a function of xNj , we have

|aj(x, 2)↓ aj(y, 2)| ⇓ ↘∝xaj(5, 2)↘
xNj ↓ yNj



⇓ 1(M3 +M4 ↘2↘2)
∑

k↓Nj

↘xk ↓ yk↘ .

This completes the proof.

Lemma 5.2. Under the assumptions in Theorem 5.2, there exists ↼, 10 > 0 s.t. if

1 < 10, we have


(
I + 1H

L ↓ 1
3/2

G
L
)↘1 (

I ↓ 1H
U + 1

3/2
G

U
)

2

⇓ 1↓ ↼1.

where H
L
,H

U
,G

L
,G

U are defined in (5.4.6). Here ↼, 10 are independent of d.

Proof. Denote G = G
L +G

U. By definition, ↖v → Rb,

↘Gv↘2 =
∑

j

(
C

∑

i:i≃j

vi

2

⇓ C
2
∑

j

(1 + s)
∑

i:i≃j

v
2
i
⇓ C

2(1 + s)2 ↘v↘2 .

So that ↘G↘2 ⇓ C(1 + s). Similarly, one can prove that ↘GL↘2, ↘GU↘2 ⇓ C(1 + s).
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With out loss of generality, we can take Hij = 0 if i ¬∈ j. Similarly we have

max
{
↘H↘2 ,

HL

2
,
HU


2

}
⇓ max

i,j

|Hij| (1 + s).

When 1 ⇓ 1
2

HL ↓ 1
1/2

G
L
↘1

, it holds that


I + 1H

L ↓ 1
3/2

G
L
↘1

 ⇓ 2, and


(
I + 1H

L ↓ 1
3/2

G
L
)↘1

↓
(
I ↓ 1H

L + 1
3/2

G
L
)

⇓

(
I + 1H

L ↓ 1
3/2

G
L
)↘1


I ↓

(
I + 1H

L ↓ 1
3/2

G
L
)(

I ↓ 1H
L + 1

3/2
G

L
)

⇓ 2


(
1H

L ↓ 1
3/2

G
L
)2


⇓ 21 2
HL

+ 1
1/2

GL

2

.

So that

(
I + 1H

L ↓ 1
3/2

G
L
)↘1 (

I ↓ 1H
U + 1

3/2
G

U
)

2

⇓

(
I ↓ 1H

L + 1
3/2

G
L
)(

I ↓ 1H
U + 1

3/2
G

U
)

2

+ 21 2
HL

+ 1
1/2

GL

2 I ↓ 1H

U + 1
3/2

G
U

2

⇓
I ↓ 1H + 1

3/2
G


2
+

(
↓1H

L + 1
3/2

G
L
)(

↓1H
U + 1

3/2
G

U
)

2

+ 21 2
HL

+ 1
1/2

GL

2 

1 + 1
HU

+ 1
3/2

GU



⇓ ↘I ↓ 1H↘2 + 1
3/2 ↘G↘2 +O(1 2).

Note here ↘G↘2 and O(1 2) are dimension independent. So that by taking

1 ⇓ 1

2
↘HL ↓ 1

1/2
G

L↘↘1
, 1 < ↘H↘↘1

, 1
3/2 ↘G↘2 +O(1 2) ⇓ 1

2
1φH , (5.4.14)

We obtain that

(
I + 1H

L ↓ 1
3/2

G
L
)↘1 (

I ↓ 1H
U + 1

3/2
G

U
)

2

⇓ 1↓ 1

2
1φH .

Note the requirements on 1 are independent of d. So that one can find some 10 > 0

independent of d s.t. (5.4.14) holds if 1 < 10. And we can take ↼ = 1
2φH .
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Lemma 5.3. The derivatives of (5.3.3) are given by

∝0ε(x) = µ

d∑

s=1

(D(v)
s x)(D(v)

s )T + (D(h)
s x)(D(h)

s )T
(
(D(v)

s x)2 + (D(h)
s x)2 + ε

)1/2
. (5.4.15)

∝2
0ε(x)

= µ

d∑

s=1

(
(D(v)

s
x)2 + (D(h)

s
x)2 + ε

)↘3/2
·

ε

(
(D(v)

s
)TD(v)

s
+ (D(h)

s
)TD(h)

s

)

+
(
(D(v)

s
x)D(v)

s
↓ (D(h)

s
x)D(h)

s

)T (
(D(v)

s
x)D(v)

s
↓ (D(h)

s
x)D(h)

s

) 
.

(5.4.16)

The following results hold: ∝2
0ε(x) ⊤ 0 and for i ¬= j,

∝2
ij
log0ε(x)


F
⇓ 4mµε

↘1/21i≃j + µε
↘1/21(i,j)↓#. (5.4.17)

Here & denotes the pairs of blocks in ‘antidiagonal’ position, i.e.

& := {(i, j) : dG(i, j) = 2, xi + yj = xj + yi}, (5.4.18)

where (xi, yi) denotes the x, y indices of block i. The gradient estimate holds:

↖t → [d], |4t0ε(x)↓ 4t00(x)| ⇓ µ

∑

s:s≃t



1↓ ↘Dsx↘√
↘Dsx↘2 + ε



 . (5.4.19)

where we denote

Dsx = (D(v)
s
x,D

(h)
s

x))T → R2
. (5.4.20)

Proof. (5.4.15) and (5.4.16) are obtained by direct computation. ∝2
0ε(x) ⊤ 0

directly follows from (5.4.16). For (5.4.17), first consider dG(i, j) = 1. If i, j

are vertical neighbors, only those s located in the boundary of the upper block
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contribute to ∝2
ij
0ε. Therefore,

∝2
ij
0ε(x)


F

⇓ µ

∑

s in boundary

(
↘Dsx↘2 + ε

)↘3/2
·

ε↘D(v)

s,i
↘↘D(v)

s,j
↘

+
(
|D(v)

s
x|↘D(v)

s,i
↘+ |D(h)

s
x|↘D(h)

s,i
↘
)(

|D(v)
s
x|↘D(v)

s,j
↘+ |D(h)

s
x|↘D(h)

s,j
↘
) 

⇓ µ

∑

s in boundary

(
↘Dsx↘2 + ε

)↘3/2
·
[
2ε+ 2

(
|D(v)

s
x|+ |D(h)

s
x|
)2
]

⇓ µ

∑

s in boundary

(
↘Dsx↘2 + ε

)↘3/2
·
(
2ε+ 4 ↘Dsx↘2

)

⇓ µ

∑

s in boundary

4ε↘1/2 = 4mµε
↘1/2

.

For (i, j) → &, there is exactly one s that contributes to ∝2
ij
0ε(x), and the only

non-zero term is the cross term of the vertical and horizontal di!erences. So that

∝2
ij
0ε(x)


F
⇓ µ

(
↘Ds↔x↘

2 + ε

)↘3/2
|D(v)

s
x||D(h)

s
x|↘D(v)

s
↘↘D(h)

s
↘

⇓ µ

(
↘Ds↔x↘

2 + ε

)↘3/2 1

2
↘Ds↔x↘

2 · 2 ⇓ µε
↘1/2

.

This proves (5.4.17). For (5.4.19), simply note that

|4t0ε(x)↓ 4t00(x)|

= µ

∑

s:s≃t

(D(v)
s
x)D(v)

s,t
+ (D(h)

s
x)D(h)

s,t

 ·

(
↘Dsx↘2 + ε

)↘1/2
↓ ↘Dsx↘↘1



⇓ µ

∑

s:s≃t

↘Dsx↘ ·

(
↘Dsx↘2 + ε

)↘1/2
↓ ↘Dsx↘↘1



= µ

∑

s:s≃t



1↓ ↘Dsx↘√
↘Dsx↘2 + ε



 .

This completes the proof.

Lemma 5.4. There exists a dimension-independent constant Cω s.t.

max
s

Ex≃ω ↘Dsx↘↘1
2 ⇓ Cω.
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Proof. Fix any s → [d]. For simplicity, denote x
(v)
s , x

(h)
s s.t.

Dsx = (D(v)
s
x,D

(h)
s

x) = (xs ↓ x
(v)
s
, xs ↓ x

(h)
s

).

Now introduce the change of variable z = Tx for some linear map determined via

z
(v)
s

= x
(v)
s

↓ xs, z
(h)
s

= x
(h)
s

↓ xs,

and zs↘ = xs↘ → Rd↘2 for the other coordinates. Accordingly, ϖ(x) is transformed

into another distribution ϖ̃(z) = ϖ(T↘1
z) (note det(T ) = 1). Also note that T↘1

admits an explicit form, i.e.

x
(v)
s

= z
(v)
s

+ zs, x
(h)
s

= z
(h)
s

+ zs, xs↘ = zs↘.

Denote zs+ = (z(v)s , z
(h)
s ) for convenience. Consider the factorization

ϖ̃(z) = ϖ̃(zs+, zs↘) = ϖ̃(zs+|zs↘)ϖ̃(zs↘),

where ϖ̃(zs↘) denotes the marginal of ϖ̃ on zs↘. Notice

log ϖ̃(zs+|zs↘) = ↓φ

2

y ↓ AT
↘1
z
2
2
↓ µ

d∑

s=1

Ds(T
↘1
z)

2
↓ log ϖ̃(zs↘) + const.

Fix zs↘ for the moment. Notice ϑ

2

y ↓ AT
↘1
z
2
2
is L-smooth for some dimension-

independent L > 0, since only a dimension-independent number of coordinates of

AT
↘1
z depend on zs↘. Therefore, fix any z

0
s+, so that

φ

2

y ↓ AT
↘1(zs+, zs↘)

2
2
↓ φ

2

y ↓ AT
↘1(z0

s+, zs↘)
2
2
↓ v

0 · (zs+ ↓ z
0
s+)

⇓ L

2

zs+ ↓ z
0
s+

2
2
,

where v
0 is the gradient w.r.t. zs+ of ϑ

2

y ↓ AT
↘1
z
2
2
at z0

s+. Notice also

µ

d∑

s=1

Ds(T
↘1(zs+, zs↘))


2
⇓ µ

d∑

s=1

Ds(T
↘1(z0

s+, zs↘))

2
+ 8µ

zs+ ↓ z
0
s+


2
,

since changing z
(v)
s or z

(h)
s a!ects 4 finite di!erence terms in the summation.

Combining the above controls, when zs+ → B1(z0s+) := {zs+ :
zs+ ↓ z

0
s+


2
⇓ 1}, it
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holds that

log ϖ̃(zs+|zs↘)↓ log ϖ̃(z0
s+|zs↘) + v

0 · (zs+ ↓ z
0
s+)

↑ ↓ L

2

zs+ ↓ z
0
s+

2
2
↓ 8µ

zs+ ↓ z
0
s+


2
↑ ↓L

2
↓ 8µ.

Therefore,

1 =

∫
ϖ̃(zs+|zs↘)dzs+

↑
∫

B1(z0s+)
exp (log ϖ̃(zs+|zs↘)) dzs+

↑ ϖ̃(z0
s+|zs↘) exp

(
↓L

2
↓ 8µ

)∫

B1(z0s+)
exp


↓v

0 · (zs+ ↓ z
0
s+)


dzs+

↑ ϖ̃(z0
s+|zs↘) exp

(
↓L

2
↓ 8µ

)
|B1|,

where we use the Jensen’s inequality and the symmetry of B1(z0s↘). Therefore,

ϖ̃(z0
s+|zs↘) ⇓ |B1|↘1 exp

(
L

2
+ 8µ

)
.

This holds for arbitrary z
0
s+, so that the marginal distribution of ϖ̃(zs+) satisfies

ϖ̃(zs+) =

∫
ϖ̃(zs+|zs↘)ϖ̃(zs↘)dzs↘ ⇓ |B1|↘1 exp

(
L

2
+ 8µ

)
=: C ⇒

.

Note C
⇒ is dimension-independent. Finally, notice

Ex≃ω ↘Dsx↘↘1
2 =

∫

R2

ϖ̃(zs+)

↘zs+↘2
dz(v)

s
dz(h)

s

⇓ 1 +

∫

↗zs+↗2⇔1

C
⇒

↘zs+↘2
dz(v)

s
dz(h)

s

= 1 +

∫ 2ω

0

∫ 1

0

C
⇒

r
· rdrd6

= 1 + 2ϖC ⇒ =: Cω.

Thus, Cω is dimension-independent. This completes the proof.

103



Chapter 6

Localized Di!usion Models

Di!usion models are the state-of-the-art tools for various generative tasks. However,

estimating high-dimensional score functions makes them potentially su!er from the

curse of dimensionality (CoD). In this chapter, we consider exploiting the locality

structure to circumvent the CoD in di!usion models. Under locality structure,

the score function is e!ectively low-dimensional, so that it can be estimated by

a localized neural network with significantly reduced sample complexity. This

motivates the localized di!usion model, where a localized score matching loss is

used to train the score function within a localized hypothesis space. We prove

that such localization enables di!usion models to circumvent CoD, at the price

of additional localization error. Under realistic sample size scaling, we show both

theoretically and numerically that a moderate localization radius can balance the

statistical and localization error, leading to a better overall performance. The

localized structure also facilitates parallel training of di!usion models, making it

potentially more e”cient for large-scale applications.

6.1 Localized di!usion models

6.1.1 Review on di!usion models

Di!usion models operate by simulating a process that gradually transforms a simple

initial distribution, often Gaussian noise, into a complex target distribution, which

represents the data of interest. The core formulation involves two processes: a

forward Ornstein–Uhlenbeck (OU) di!usion process which evolves data samples

from the data distribution ϖ0 to noisy samples drawn from a Gaussian distribution,

and a reverse di!usion process that learns to progressively denoise the samples and
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e!ectively reconstruct the original data distribution.

Consider a forward OU process (Xt)t↓[0,T ] that is initialized with the target

distribution ϖ0, i.e.,

dXt = ↓Xtdt+
⊥
2dWt, X0 ∈ ϖ0. (6.1.1)

Denote its reverse process as (Yt)t↓[0,T ] s.t. Yt = XT↘t. Under mild conditions, Yt

follows the reverse SDE [102]

dYt = (Yt + 2∝ log ϖT↘t(Yt)) dt+
⊥
2dWt, Y0 ∈ ϖT , (6.1.2)

where we denote ϖt = Law(Xt). The target distribution ϖ0 can then be sampled

by first sampling Y0 ∈ ϖT and then evolving Yt according to (6.1.2) to obtain a

sample YT ∈ ϖ0.

To implement the above scheme, several approximations are needed:

1. Score estimation. The score function s(x, t) := ∝ log ϖt(x) is not accessible,

and needs to be estimated from the data via the denoising score matching

scheme [114, 101, 61]

ŝ = argmin
sϱ

L(s◁),

L(s◁) :=
∫

T

0
Ex0≃ω0


Ext≃ωt|0(xt|x0)

s◁(xt, t)↓∝xt log ϖt|0(xt|x0)
2


dt.

(6.1.3)

In the sampling process, the true score ∝ log ϖT↘t(Yt) in (6.1.2) is approxi-

mated by the estimated score ŝ(Yt, T ↓ t).

2. Approximation of ϖT . The initial distribution ϖT in the reverse process is

intractable. But since the OU process converges exponentially to ϖ⇓ = N(0, I),

we can approximate ϖT by N(0, I) in (6.1.2), i.e., Y0 is drawn from N(0, I).

3. Early stopping. The reverse process is usually stopped at t = T ↓ t for some

small t > 0 to avoid potential blow up of the score function st as t ⇔ 0. The

early stopped samples satisfy YT↘t ∈ ϖt, which should be close to ϖ0 when t

is small.

4. Time discretization. The Euler-Maruyama scheme is used to discretize (6.1.2).

Pick time steps 0 = t0 < t1 < · · · < tN = T ↓ t, and evolve n = 0, 1, . . . , N ↓ 1
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by

Ytn+1 = Ytn + (Ytn + 2ŝ(Ytn, T ↓ tn))%tn +

2%tn2n, (6.1.4)

where %tn = tn+1 ↓ tn and 2n ∈ N(0, I). Design of the time steps (the

schedule) is crucial for the empirical performance of the sampling process.

Note the OU process admits an explicit transition kernel

ϖt|0(xt|x0) = N(xt;↽tx0, ⇁
2
t
I), ↽t := e↘t

, ⇁t :=

1↓ e↘2t. (6.1.5)

So that ∝xt log ϖt|0(xt|x0) = ↓⇁
↘2
t
(xt ↓ ↽tx0), and ϖt|0(xt|x0) can be realized as

xt = ↽tx0 + ⇁t◁t, ◁t ∈ N(0, I).

Therefore, the denoising score matching loss in (6.1.3) can be written as

L(s◁) =
∫

T

t

Ex0≃ω0E⇁t≃N(0,I)

s◁(↽tx0 + ⇁t◁t, t) + ⇁
↘1
t
◁t

2

dt, (6.1.6)

where we involve the early stopping truncation. The above loss provides a convenient

form for implementation [61].

6.1.2 Locality structure in di!usion models

We show in this section that the locality structure is preserved in the forward OU

process, which lays the foundation for the localized score matching in di!usion

models.

The explicit transition kernel (6.1.5) of the OU process implies that ϖt has an

explicit density

ϖt(xt) =

∫
N(xt;↽tx0, ⇁

2
t
I)ϖ0(x0)dx0.

ϖt can be viewed as an interpolation between ϖ0 and ϖ⇓ = N(0, I). Suppose ϖ0 is a

localized distribution on an undirected graph G. It is obvious that ϖ⇓ is localized,

but their interpolation ϖt may not remain strictly localized. However, ϖt is still

approximately localized, as proved in the following theorem.

Theorem 6.1. Suppose ϖ0 has dependency graph G and is log-concave and smooth,

i.e. ⇑0 < m ⇓ M < ′ s.t. mI ▽ ↓∝2 log ϖ(x) ▽ MI. Then for any t → (0, T ], ϖt
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is approximately localized on G. Specifically,

∝2
ij
log ϖt


⇓ ⇓ ↽

2
t

⇁
2
t
(m⇁

2
t
+ ↽

2
t
)

(
1↓ m⇁

2
t
+ ↽

2
t

M⇁
2
t
+ ↽

2
t

)dG(i,j)

. (6.1.7)

Here ↽t = e↘t and ⇁t =
⊥
1↓ e↘2t (cf. (6.1.5)).

Remark 6.1. (1) While Theorem 6.1 assumes log-concavity to apply Theorem 3.5,

the exponential decay of correlations is ubiquitous for distributions with locality

structure [68, 92, 33] and does not inherently depend on log-concavity. The

assumption is adopted here for simplicity and to derive an explicit bound.

(2) Here we assume that ϖ0 is localized for technical convenience. In practice,

many distributions of interest, such as image distributions, are typically only

approximately localized. We believe that our results can be extended to this setting.

Due to the additional technical challenges, we leave this extension to future work.

The proof is based on the observation that

∝2
ij
log ϖt(xt) = ↽

2
t
⇁
↘4
t
Covω0|t(x0|xt) (x0,i, x0,j) .

So that the result directly follows Theorem 3.5. Detailed proofs are delayed to

Section 6.4.1.

6.1.3 Localized hypothesis space

To exploit the locality structure in di!usion models, we introduce the localized

hypothesis space for the score function,

Hr =

s◁ : Rd+1 ⇔ Rd | s◁,j(x, t) = u◁,j(xN r

j
, t), u◁,j → Uj, j → [b]

}
, (6.1.8)

where r denotes the localization radius, N r

j
is the extended neighborhood (2.1.2),

and Uj is certain hypothesis space for the j-th component of the score function to

be specified later. Note here we use s◁,j(·, t) to approximate the score function of

ϖt in light of Theorem 6.1.

Define the e!ective dimension of s◁ as

de$ := max
j

dj,r, dj,r :=
∑

i↓N r
j

di. (6.1.9)

Since s◁(·, t) can be viewed as a collection of functions {u◁,j(·, t) : Rdj,r ⇔ Rdj}j↓[b],
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it is essentially a function of de$ variables. For local graph, de$ A d, so that

intuitively estimating s◁ in Hr does not su!er from the CoD.

ReLU neural network In practice, Hr can be realized by a neural network

(NN) with locality constraints. Here we consider the widely used ReLU NN class.

We note that our method and analysis result apply to other types of NNs as well.

Following [84], we introduce the hyperparameters of a sparse NN as follows:

• L → Z+ denotes the depth of the NN.

• W = (w0, . . . ,wL) → RL+1 denotes the width vector of the NN.

• S,B denote the sparsity and boundedness of the parameters.

Consider the ReLU NN class with hyperparameters (L,W, S,B):

NN(L,W, S,B) = {u◁ : Rw0 ⇔ RwL | 6 → !(L,W, S,B)},

!(L,W, S,B) =
{
6 = {Wl, bl}Ll=1 | Wl → Rwl⇐wl↓1, bl → Rwl, ↘6↘0 ⇓ S, ↘6↘⇓ ⇓ B

}
,

u◁(x) = WL⇁(WL↘1⇁(· · · ⇁(W1x+ b1) · · · ) + bL↘1) + bL,

(6.1.10)

where ⇁(x) = max{0, x} is the ReLU activation function (operated element-wise

for a vector) and ↘6↘0 , ↘6↘⇓ are the vector ϑ0 and ϑ⇓ norms of the parameter 6.

One can choose the hypothesis space Uj as consisting of such ReLU NNs:

Uj = NN(Lj,Wj
, S

j
,B

j), where w
j

0 = dj,r + 1, w
j

L = dj. (6.1.11)

Here the hyperparameters Lj,Wj
, S

j
,B

j are to be determined later.

6.1.4 Localized denoising score matching

Given the hypothesis space Hr (6.1.8) with localized NN score Uj (6.1.11), we

can learn the localized score function by minimizing the denoising score matching

loss (6.1.6). Given i.i.d. sample {X(i)}N
i=1 from ϖ0, the population loss (6.1.6) is

approximated by the empirical loss, i.e.,

ŝ = argmin
sϱ↓Hr

L̂N (s◁), (6.1.12)
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with

L̂N (s◁) =
1

N

N∑

i=1

∫
T

t

E⇁t≃N(0,I)

[s◁(↽tX
(i) + ⇁t◁t, t) + ⇁

↘1
t
◁t


2
]
dt. (6.1.13)

Notice L̂N is decomposable: L̂N (s◁) =
∑b

j=1 L̂j,N (u◁,j), where

L̂j,N (u◁,j) =
1

N

N∑

i=1

∫
T

t

E⇁t≃N(0,I)

[u◁,j(↽tX
(i)
N r

j
+ ⇁t◁t,N r

j
, t) + ⇁

↘1
t
◁t,j


2
]
dt.

(6.1.14)

The optimal ûj then solves

ûj = argmin
uϱ,j↓Uj

L̂j,N (u◁,j). (6.1.15)

This allows for parallel training of the localized NNs, i.e., the components of the

score function can be trained independently. Note the score function need not be a

gradient field, which introduces great flexibility in designing hypothesis space.

Remark 6.2. For general distributions, the components of the score function are

correlated, so that {s◁,j(x)}bj=1 should be trained simultaneously. However, for ap-

proximately localized distributions, most components of s◁ are almost uncorrelated,

which facilitates parallel training.

6.2 Analysis of localized di!usion models

6.2.1 Error decomposition

We do not consider time discretization here for simplicity. The sampling process is

dŶt =
(
Ŷt + 2ŝ(Ŷt, T ↓ t)

)
dt+

⊥
2dWt, Ŷ0 ∈ N(0, I). (6.2.1)

And we take the early stopped distribution µ̂T↘t = Law(ŶT↘t) as the approximation

of ϖ0. It su”ces to consider the error between µ̂T↘t and ϖt, as it is easier to control

the early stopping error, i.e., the distance between ϖt and ϖ0. The following error

decomposition is standard [22].
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Proposition 6.1. Under Novikov’s condition [22]:

EQ

[
exp

(
1

2

∫
T↘t

0
↘ŝ(Yt, T ↓ t)↓ s(Yt, T ↓ t)↘2 dt

]
< ′,

where Q = Law(Y[0,T↘t]) denotes the path measure of the reverse process (6.1.2). It

holds that

KL(ϖt↘µ̂T↘t) ⇓ e↘2T
KL(ϖ0↘N(0, I)) +

∫
T

t

Ext≃ωt


↘ŝ(xt, t)↓ s(xt, t)↘2


dt. (6.2.2)

Proofs are delayed to Section 6.4.2. We note that the first term on the right hand

side can be replaced by e↘2(T↘t)
KL(ϖt↘N(0, I)) when ϖ0 is singular w.r.t. N(0, I),

so that it always decays exponentially in T regardless of ϖ0. Thus it su”ces to

control the second term; i.e. the score approximation error.

6.2.2 Localized score function

As discussed in Section 6.1.2, strict locality is not preserved in the forward OU

process, so that in general, the true score s /→ Hr. It is therefore crucial to control

the approximation error of the best possible approximation s
↙ → Hr.

Consider taking Uj = C
2(Rdj,r+1) in the localized hypothesis space Hr (6.1.8),

so that the only constraint in Hr is the locality structural constraint (note we

always consider at least twice di!erentiable functions). Then the best possible

approximation error can be identified as the localization error of the score function.

To avoid confusion, we denote H
↙
r

as the hypothesis space when we take Uj =

C
2(Rdj,r+1).

Motivated by (6.2.2), we consider the optimal approximation in the L2(ϖt) sense,

i.e.,

s
↙ = argmin

sϱ↓H ↔
r

∫
T

t

∫
↘s◁(x, t)↓ s(x, t)↘2 ϖt(x)dxdt

⇒ ↖j → [b], s
↙
j
(x, t) = u

↙
j
(xN r

j
, t),

where u
↙
j
= argmin

uϱ,j↓Uj

∫
T

t

∫
↘u◁,j(xN r

j
, t)↓ sj(x, t)↘2ϖt(x)dxdt.

Using the property of conditional expectation, it is straightforward to show that
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the optimizer is

u
↙
j
(xN r

j
, t) = Ex→≃ωt


sj(x

⇒
, t)

x⇒N r
j
= xN r

j



=
1

ϖt(xN r
j
)

∫
∝j log ϖt(xN r

j
, x↘N r

j
)ϖt(xN r

j
, x↘N r

j
)dx↘N r

j
.

(6.2.3)

Here we denote ↓N r

j
:= [b] \ N r

j
.

Due to the approximate locality (Theorem 6.1), one can expect that the ap-

proximation error decays exponentially with the radius r. Precisely, we prove the

following theorem.

Theorem 6.2. Let ϖ0 satisfy the conditions in Theorem 6.1, and its depen-

dency graph is (s, ϱ)-local. Consider the hypothesis space H
↙
r

(6.1.8) with Uj =

C
2(Rdj,r+1). Then there exists an optimal approximation s

↙ → H
↙
r

such that

∫
T

t

s↙
j
(x, t)↓ sj(x, t)

2
L2(ωt)

dt ⇓ Cdj(r + 1)εe↘c(r+1)
, (6.2.4)

where C and c are some dimensional independent constants depending on m,M, s, ϱ:

C = 2smax{1,m↘1}ϱ!κ2ε+1 log κ, c = ↓2 log(1↓ κ
↘1).

Note (6.2.4) is independent of t, T . Moreover, for any s◁ → H
↙
r
, the Pythagorean

equality holds

↘s◁,j(x, t)↓ sj(x, t)↘2L2(ωt)
=

s◁,j(x, t)↓ s
↙
j
(x, t)

2
L2(ωt)

+
s↙

j
(x, t)↓ sj(x, t)

2
L2(ωt)

.

(6.2.5)

The proof can be found in Section 6.4.3. (6.2.4) provides an upper bound for

the hypothesis error of using a localized score function to approximate the true

score function. Note although the true score sj(x, t) is a d-dimensional function,

the bound is independent of the ambient dimension d. Secondly, the bound decays

exponentially (up to a polynomial factor) w.r.t. the radius r, so that a small r is

su”cient to achieve a good approximation. Finally, note taking summation over

j → [b] in (6.2.4) gives the total approximation error

∫
T

0
↘s◁(x, t)↓ s(x, t)↘2

L2(ωt) dt ⇓ Cd(r + 1)εe↘c(r+1)
,

which scales linearly with the dimension d.
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6.2.3 Sample complexity

In this section, we demonstrate the key advantage of the localized di!usion models,

i.e., that the sample complexity is independent of the ambient dimension d. We

will show that the denoising score matching with the localized hypothesis space Hr

is equivalent to fitting the L
2-optimal localized score in (6.2.3). Since the localized

scores are low-dimensional functions, the sample complexity should be independent

of d.

Equivalent to di!usion models for marginals A key observation is that the

localized denoising score matching loss (6.1.14) is equivalent to the j-th component

loss of the score function when we use standard di!usion model to approximate

the marginal distribution ϖ0(xN r
j
). To be precise, denote its population version as

Lj(u◁,j) = Ex0≃ω0

∫
T

t

E⇁t≃N(0,I)

[u◁,j(↽tx0,N r
j
+ ⇁t◁t,N r

j
, t) + ⇁

↘1
t
◁t,j


2
]
dt.

(6.2.6)

The following proposition shows the equivalence.

Proposition 6.2. The following equalities hold:

Lj(uε,j)

= Ex0,Nr
j
↓ϑ0

∫ T

t

Eϖt↓N(0,I)

[uε,j(↽tx0,N r
j
+ ⇁t◁t,N r

j
, t) + ⇁

↑1
t ◁t,j


2
]
dt

= Ex0,Nr
j
↓ϑ0

∫ T

t

Ext,Nr
j
↓ϑt|0(xt,Nr

j
|x0,Nr

j
)

[uε,j(xt,N r
j
, t)↓∝j log ϖt|0(xt,N r

j
|x0,N r

j
)

2
]
dt

=
∫ T

t

Ext,Nr
j
↓ϑt

[uε,j(xt,N r
j
, t)↓ u

↔
j(xt,N r

j
, t)


2
]
dt+ const.

Here u
↙
j
is the optimal localized approximation of the score function (6.2.3), and

the constant depends only on ϖ0.

The proof can be found in Section 6.4.4. Proposition 6.2 implies that the localized

score matching can be regarded as b di!usion models, each of which aims to fit (one

component of) the score function of a low-dimensional marginal distribution. Using

the minimax results of di!usion models, e.g. [84], one immediately obtains that

the sample complexity of the localized score matching is essentially independent of

the ambient dimension d.
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A complete error analysis We provide a concrete result below. Following [84],

we assume a further boundedness constraint on the hypothesis space Hr (6.1.8):

H
N

r
=

{
s → Hr

 ↖j → [b], ↘sj(·, t)↘⇓ ↭ log2N

⇁t

}
. (6.2.7)

The constraint is natural as the score function scales with ⇁
↘1
t
; see [84] for more

discussions. We also assume the following technical regularity conditions on the

target distribution.

Assumption 6.1. The target distribution ϖ0 satisfies the following conditions:

1. (Boundedness) ϖ0 is supported on [↓M,M ]d, and its density is upper and lower

bounded by some constants Cω, C
↘1
ω

respectively.

2. (▷-smoothness) For any j → [b], its marginal density

ϖ0(xN r
j
) → BR(B

↽

a,b
([↓M,M ]dj,r)).

Here B
↽

a,b
denotes the Besov space with 0 < a, b ⇓ ′ and ▷ > (1/a ↓ 1/2)+,

and BR denotes the ball of radius R in the Besov space.

3. (Boundary smoothness) ϖ0(xN r
j
)|% → B1(C⇓($)), where $ = [↓M,M ]dj,r \

[↓M + a0,M ↓ a0]dj,r is the boundary region for some su”ciently small width

a0 > 0. Given sample size N , one can take a0 ≈ N
↘ 1

de! , where de$ is the e!ective

dimension (6.1.9).

Remark 6.3. [84] only considers the standard domain [↓1, 1]d. It can be simply

extended to [↓M,M ]d by scaling argument. Denote ϖM := M
d
ϖ0(M ·), then ϖ

M is

supported on [↓1, 1]d and satisfies the same regularity conditions. Note the scaling

only a!ects the radius R of the Besov space, and does not change the scaling of

the sample complexity.

See [84] for more discussions on the regularity conditions. The following theorem

provides an overall error analysis by combining Proposition 6.1, Theorem 6.2 and

Theorem 4.3 in [84]. We comment that [119] points out a flaw in the proof in [84],

but the issue is fixed in [119].

Theorem 6.3. Let ϖ0 satisfy Assumption 6.1 and the conditions in Theorem 6.2.

Given sample size N , let H
N

r
be the bounded hypothesis space (6.2.7) with Uj =
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NN(Lj,Wj
, S

j
,B

j) (6.1.11). Denote nj = N
↘dj/(2↽+dj), and choose the hyperparame-

ters as

L
j = O(log4 nj),

Wj

⇓ = O(nj log

6
nj), S

j = O(nj log
8
nj), B

j = n
O(log log nj)
j

.

choose t = O(N↘k) for some k > 0 and T ℑ logN . Let ŝ be the minimizer of

the empirical loss (6.1.13) in H
N

r
. Denote µ̂T↘t as the sampled distribution using

learned score ŝ. Then it holds that

E{X(i)}Ni=1
[KL(ϖt↘µ̂T↘t)] ⇓ e↘2T

KL(ϖ0↘N(0, I))

+ Cd(r + 1)εe↘c(r+1) + C
⇒
bN

↘ 2ς
de!+2ς log16N.

(6.2.8)

Here de$ is the e!ective dimension (6.1.9), C, c are dimensional independent con-

stants in Theorem 6.2, and C
⇒ is a dimensional independent constant.

The proof can be found in Section 6.4.5. There are three sources of error in

(6.2.8):

(1) Approximation error of ϖT , which decays exponentially in terminal time T ;

(2) Localization error of the score function, which decays exponentially in localiza-

tion radius r;

(3) Statistical error, which decays polynomially in N , with statistical rate 2↽
de!+2↽ .

Remark 6.4. (1) Compared to the vanilla method, the localized di!usion models

achieve a much faster statistical rate 2↽
de!+2↽ ∋ 2↽

d+2↽ , and thus potentially mitigate

the curse of dimensionality.

(2) (6.2.8) indicates a trade o! in the choice of localization radius r. A smaller r

leads to smaller statistical error but induces larger localization error. Note de$ ℑ r
ε

(see Definition 2.1), so that the optimal choice is r
↙ = O((logN)

1
ω+1 ). When

logN A d
ω+1
ω , one can show that the overall error is greatly reduced compared to

the usual statistical error:

e↘cr
↔

+N
↘ 2ς

d↔
e!

+2ς A N
↘ 2ς

d+2ς .

This is usually the case in high-dimensional problems, as one cannot obtain a large

sample size N exponentially in d.

(3) We compare the sampled distribution to the early-stopped distribution ϖt by

convention. In fact, the early-stopping error can be controlled straightforwardly in
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Wasserstein distance. For instance, by Lemma 3 in [22], it holds thatW2
2(ϖ0, ϖt) ↭ dt.

So that the overall error

E{X(i)}Ni=1
[W2

2(ϖ0, µ̂T↘t)] ↭ W
2
2(ϖ0, ϖt) + E{X(i)}Ni=1

[W2
2(ϖt, µ̂T↘t)]

↭ dN
↘k + E{X(i)}Ni=1

[KL(ϖt↘µ̂T↘t)].

Here the second inequality uses Talagand’s inequality. The early-stopping error

does not deteriorate the order of convergence if one take k ↑ 1
2 .

6.3 Numerical experiments

6.3.1 Gaussian model

In this section, we verify the quantitative results obtained before using Gaussian

models. First, we use randomly generated Gaussian distributions to show that the

locality is approximately preserved in OU process. Second, we consider sampling a

discretized OU process, and show that a suitable localization radius is important

to balance the localization and statistical error.

Approximate locality

Consider localized Gaussian distribution

ϖ0 = N(0, C0),

where the precision matrix P0 := C
↘1
0 is a banded matrix s.t.

P0(i, j) = 0, ↖|i↓ j| > r0.

We will generate random localized precision matrices P0 with di!erent dimensions

and bandwidths, by taking P0 = LL
T, where L is a randomly generated banded

lower triangular matrix. As the condition number plays an important role in the

locality, we will also record the condition number of the precision matrices.

We consider di!usion models to sample the distribution. The score function

admits an explicit form s(x, t) = ∝ log ϖt(x) = ↓Ptx, where

Pt := ↓∝2 log ϖt = (↽2
t
C0 + ⇁

2
t
I)↘1

.
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We will focus on Pt, as the locality of the score function s(·, t) is equivalent to the

locality of the precision matrix Pt for Gaussians.
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Figure 6.1: Locality in di!usion models. The precision matrix Pt at t = 0.1039,
plotted in log |Pt| scale. We can see precise exponential decay of Pt(i, j) in |i↓ j|.

First, we show in the top-left plot in Figure 6.1 that the |Pt(i, j)| is indeed

exponentially decaying with |i↓ j|. Here we take a snapshot of the precision matrix

at t = 0.1039, which is the time with maximal e!ective localization radius (see

middle plot in Figure 6.2). We note that the precise exponential decay is not chosen

artificially, and any snapshot will yield similar results.

We then compute the e!ective localization radius of Pt, which is defined as the

largest r such that the average of the r-th o!-diagonal elements is larger than a

threshold. More precisely,

rloc(t) := max

1 ⇓ r < d :

1

d↓ r

∑

1⇔i⇔d↘r

|Pt(i, i+ r)| ↑ ◁ · 1
d
tr(Pt)

}
. (6.3.1)

We take the threshold rate ◁ = 0.001. We plot the function rloc(t) for di!erent

dimensions d, bandwidths r0 and condition numbers κ in Figure 6.2.

From Figure 6.2, we can see that the e!ective localization radius rloc(t) first

increases with t, and then decreases to 1 when t is large. This is due to the fact

that Pt can be regarded as an interpolation between P0 and P⇓ = I. Note this

is consistent with the theoretical prediction in Theorem 6.1, where the bound
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Figure 6.2: Localized di!usion model: e!ective localization radius rloc(t) (6.3.1)
under di!erent problem dimension d, precision matrix bandwidth r0 and condition
number κ. Left: rloc(t) with di!erent dimensions. Here r0 = 10 and the condition
numbers are similar (κ ≈ 193, 191, 197). Middle: rloc(t) with di!erent bandwidths.
Here d = 1, 000 and condition numbers κ ≈ 163, 146, 132. Right: rloc(t) with
di!erent condition numbers. Here d = 1, 000 and r0 = 10.
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of ↘∝2
ij
log ϖt↘ first increases with t and then decreases to 0. Next, we can see

that the e!ective localization radius rloc(t) is almost independent of the dimension

d, consistent with our motivation that the locality structure is approximately

preserved with dimension independent radius. We can also see that the e!ective

localization radius rloc(t) is almost linear in the bandwidth r0, and increases with

the condition number κ.

Balance of localization error and statistical error

Consider a discretized OU process X → Rd (d = 101), where Xn follows the

dynamics

X1 ∈ N(0, 1), Xn+1 = ↽hXn + ⇁h2n, 2n ∈ N(0, 1),

where ↽h = e↘h
, ⇁

2
h
= 1↓↽

2
h
(h = 0.2), and X1, 21, . . . , 2100 are independent. Notice

X follows a Gaussian distribution

ϖ0(x) = N(x1; 0, 1)
d↘1∏

n=1

N(xn+1;↽hxn, ⇁
2
h
). (6.3.2)

Consider using di!usion model to sample the above distribution. Since the marginals

of the forward process are all Gaussians, the score function is a linear function in x.

Given data sample {X(i)}N
i=1, we estimate the score of the linear form ŝ(t, x) = ↓P̂tx

by the loss (6.1.6), which admits an explicit solution

P̂t = (↽2
t
Ĉ0 + ⇁

2
t
I)↘1

, (6.3.3)

where Ĉ0 is the empirical covariance of {X(i)}i=1. The non-localized backward

process is

Ytn+1 = Ytn +%tn

(
I ↓ 2P̂T↘tn

)
Ytn +


2%tn2n. (6.3.4)

Here P̂t is the estimated optimal precision matrix (6.3.3), 2n ∈ N(0, I), Y0 ∈ N(0, I),

and %tn = tn+1 ↓ tn is the time step. We use the linear variance schedule

7n = (7N ↓ 71)
n↘1
N↘1 + 71 (1 ⇓ n ⇓ N) [61], which corresponds to %tn = ↓1

2 log(1↓
7N↘n) (0 ⇓ n ⇓ N ↓ 1). We take N = 1, 000, 71 = 10↘4 and 7N = 0.05.

A straightforward localization of (6.3.4) is

Y
loc,r
tn+1

= Y
loc,r
tn

+%tn

(
I ↓ 2P̂ loc,r

T↘tn

)
Y

loc,r
tn

+


2%tn2n,

P̂
loc,r
T↘tn

(i, j) := P̂T↘tn(i, j)1|i↘j|⇔r.

(6.3.5)
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We will use (6.3.5) to sample the target distribution with di!erent localization radii

r, and compare it to the reference sampling process (6.3.4). Although the localized

score ŝ
loc,r(t, x) = ↓P̂

loc,r
t

x in (6.3.5) is not the minimizer of L̂N (s◁) (6.1.13), it is

very close to the minimizer, and it still yields a good approximation, see Figure 6.3.

0 5 10 15 20

-2

0

2

Data sample

0 5 10 15 20

-2

0

2

Generated sample

Figure 6.3: Localized di!usion model: sampling OU process. Left: Trajectories
directly sampled from OU process. Right: Sampled trajectories using the localized
sampling process (6.3.5) with localization radius r = 12.

As all the distributions involved are Gaussian, we can use the sample covariance

to measure the localization error. We take data sample size N = 103 and generated

sample size Ngen = 104. The results are shown in Figure 6.4. We measure the

relative ϑ
2-error of the sample covariance

err :=
↘Ĉ ↓ C↘2
↘C↘2

, (6.3.6)

where C = P
↘1
0 is the true covariance, Ĉ is the sample covariance of samples from

(6.3.4) or (6.3.5), and ↘·↘2 is the matrix 2-norm. The reference error is computed

using the sample covariance of the non-localized backward process (6.3.4). For each

localization radius, we run 30 independent experiments (with new data sample)

and compute the mean and standard deviation of the relative error. The plot shows

that as the localization radius increases, the overall error first decays quickly, and

then gradually increases. This is due to the balance between the localization error

and the statistical error, as shown more clearly in the bottom plots.

In Figure 6.5, we plot the entrywise error of the sample covariance (normalized
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Figure 6.4: Localized di!usion model: error tradeo! in sampling OU process.
Relative ϑ

2-error (6.3.6) of the sample covariance for di!erent localization radii r;
the reference error is from the non-localized sampling process (6.3.4). The shaded
area denotes the 1⇁ region.

by ↘C↘2) for di!erent localization radii r. The localization error dominates when

the localization radius is small, and we can see that the o!-diagonal covariance is not

accurately estimated when r = 4. The o!-diagonal part is approximately recovered

when r = 12, and the overall error decreases to minimal. As the localization radius

r further increases, the statistical error begins to dominate, leading to spurious long-

range correlations as observed in the case r = 35. This is a well-known phenomenon

caused by insu”cient sample size [63]. This suggests a suitable localization radius

is important to balance the localization and statistical error to reduce the overall

error, validating the result in Theorem 6.3.

6.3.2 Cox-Ingersoll-Ross model

We consider the Cox-Ingersoll-Ross (CIR) model [30, 31]

dX = 2a(b↓X)dt+ ⇁

⊥
XdWt, (6.3.7)
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Figure 6.5: Localized di!usion model: entrywise sample covariance error in sampling
OU process with di!erent localization radius r → {4, 12, 35}.
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where Wt is standard one-dimensional Brownian motion. The CIR model (6.3.7)

possesses a closed form solution

X(t)

c(t)
∈ H(t), c(t) =

⇁
2

8a
(1↓ e

↘2at),

where H(t) is a noncentral 8-squared distribution with 8ab/⇁2 degrees of freedom

and noncentrality parameter c(t)↘1
e
↘2at

X(0).

We generate artificial data by integrating the CIR model (6.3.7) with an Euler–

Maruyama discretization and a time step of h = 0.01, sampling at every %t = 1

time unit. We determine the score from M = 50 independent sample trajectories,

each of length N = 50, i.e., each trajectory covers 50 time units. We choose

a = 1.136, b = 1.1 and ⇁ = 0.4205.

For the di!usion model we choose a linear variance schedule with 7(t) =

(7T ↓ 70)t/T + 70 with T = 0.05, 7T = 0.5 and 70 = 0.0001, and where we sample

the di!usion time t → [0, T ] in steps of 0.001 di!usion time units. The discount

factor is given by ↽(t) = 1 ↓ 7(t). The score is estimated from 5, 000 randomly

selected training points, di!ering in their uniformly sampled di!usion times and

initial training sample. To learn the score function we employ a neural network

with 3 hidden layers of sizes 2r + 2, 6 and 3, respectively, with an input dimension

of 2r + 2 coming from the localized states of dimension 2r + 1 and the di!usion

time. The weights of the neural network are determined by minimizing the MSE

error using an Adams optimizer with a learning rate 5 = 0.00005.

We show in Figure 6.6 a comparison of the empirical histograms and the auto-

correlation functions of the training data and the data generated by the di!usion

model. The histograms are produced from 5, 000 training and generated time series.

The auto-correlation function ≃C(1)⇐ is computed as an ensemble average over the

samples. It is seen that if the localization radius is chosen too small with r = 0, i.e.,

assuming a ω-correlated process, the auto-correlation function rapidly decays as

the localized di!usion models have no information about the correlations present

in the data. Interestingly, the empirical histogram is relatively well approximated

even with r = 0. On the other extreme, for large localization radius r = 20 the

number of independent training samples with M = 50 is not su”ciently large to

generate N = 50-dimensional samples, and the auto-correlation function exhibits

an increased variance. We found that a localization radius of r = 2 can be employed

to yield excellent agreement of the histogram and the auto-correlation function.
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We checked that varying the localization radius from r = 2 to r = 8 yields similar

results.

Figure 6.6: Localized di!usion model: sampling CIR model. Comparison of the
data obtained from the original CIR model (6.3.7) and from the di!usion model for
localization radii r = 0 (left), r = 2 (middle) and r = 20 (right). Top: Empirical
histogram. Bottom: Auto-correlation function, averaged over all 2, 500 samples.
The dashed lines mark deviations of the sample mean that are 1 standard deviation
away. The light grey lines show the individual auto-correlation functions of the
generated data.
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For the training we estimate the score function at entry i for i = 2r+1, . . . , N ↓
2r ↓ 1 from the localized state (xr)i = [xi↘r, . . . , xi, . . . , xi+r] → R2r+1. Due to

stationarity of the process, each component of the score function si((xr)i) will be

the same except the boundaries, i.e. i ⇓ r or i ↑ d ↓ r. This allows us to train

a single score function which takes a (2r + 2)-dimensional input (2r + 1 for the

localized state and 1 for the di!usion time) to generate a 1-dimensional output

of the score function at location r < i < d ↓ r. To deal with the boundaries of

the time series for i = 1, . . . , r and i = N ↓ r, . . . , N , we pad with the time series

x, reflected around i. During the training process we have employed independent

noise for each localized region. We have checked that the results do not change if

the noise in the di!usion model is kept constant for each local input or if varied

when cycling through the localized regions.

6.4 Proofs

6.4.1 Proof of Theorem 6.1

Proof of Theorem 6.1. Recall

ϖt(xt) =

∫
N(xt;↽tx0, ⇁

2
t
I)ϖ0(x0)dx0.

We first compute the Hessian of the log density of ϖt:

∝2 logϖt(xt) =
∝2

ϖt(xt)

ϖt(xt)
↓ ∝ϖt(xt)

ϖt(xt)

∝ϖt(xt)T

ϖt(xt)

=
1

ϖt(xt)

∫ (
↓xt ↓ ↽tx0

⇁
2
t

)(
↓xt ↓ ↽tx0

⇁
2
t

)T

N(xt;↽tx0, ⇁
2
t
I)ϖ0(x0)dx0

↓ 1

ϖt(xt)

∫ (
↓xt ↓ ↽tx0

⇁
2
t

)
N(xt;↽tx0, ⇁

2
t
I)ϖ0(x0)dx0

· 1

ϖt(xt)

∫ (
↓xt ↓ ↽tx0

⇁
2
t

)T

N(xt;↽tx0, ⇁
2
t
I)ϖ0(x0)dx0

= ⇁
↘4
t
Eω0|t(x0|xt) (xt ↓ ↽tx0) (xt ↓ ↽tx0)

T

↓ ⇁
↘4
t
Eω0|t(x0|xt) (xt ↓ ↽tx0)Eω0|t(x0|xt) (xt ↓ ↽tx0)

T

= ⇁
↘4
t
Covω0|t(x0|xt) (xt ↓ ↽tx0, xt ↓ ↽tx0)

= ↽
2
t
⇁
↘4
t
Covω0|t(x0|xt) (x0, x0) ,
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where ϖ0|t(x0|xt) is the distribution of x0 conditioned on xt. As a consequence,

∝2
ij
log ϖt(xt) = ↽

2
t
⇁
↘4
t
Covω0|t(x0|xt) (x0,i, x0,j) . (6.4.1)

Consider the conditional distribution ϖ0|t(x0|xt), whose log density is

log ϖ0|t(x0|xt) = ↓ log ϖt(xt) + log ϖ0(x0)↓
1

2⇁2
t

↘xt ↓ ↽tx0↘2 ↓
d

2
log(2ϖ⇁2

t
).

Fix xt, and denote for simplicity p(x) = ϖ0|t(x|xt). Then

∝2 log p(x) = ∝2 log ϖ0(x)↓
↽
2
t

⇁
2
t

I.

Note by assumption, ∝2
ij
log ϖ0 = 0 if i /→ Nj, and mI ▽ ↓∝2 log ϖ0 ▽ MI . So that

↖i /→ Nj, ∝2
ij
log p(x) = 0.

(
m+

↽
2
t

⇁
2
t

)
I ▽ ↓∝2 log ϖ0 ▽

(
M +

↽
2
t

⇁
2
t

)
I. (6.4.2)

By Theorem 3.5, for any Lipschitz functions f, g, we have

Covp(x) (f(xi), g(xj))
 ⇓ |f |Lip |g|Lip

(
m+

↽
2
t

⇁
2
t

)↘1(
1↓ m⇁

2
t
+ ↽

2
t

M⇁
2
t
+ ↽

2
t

)dG(i,j)

.

Recall (6.4.1), and by definition of the matrix norm,

∝2
ij
log ϖt(xt)

 = sup
↗ti↗=↗tj↗=1

t
T
i
∝2

ij
log ϖt(xt)tj

= sup
↗ti↗=↗tj↗=1

↽
2
t
⇁
↘4
t
Covp(x)


t
T
i
xi, t

T
j
xj


.

Take f(xi) = t
T
i
xi and g(xj) = t

T
j
xj, and note |f |Lip = |g|Lip = 1, we obtain

∝2
ij
log ϖt(xt)

 ⇓ ↽
2
t
⇁
↘4
t

(
m+

↽
2
t

⇁
2
t

)↘1(
1↓ m⇁

2
t
+ ↽

2
t

M⇁
2
t
+ ↽

2
t

)dG(i,j)

.

The conclusion follows by noting the above bound holds for all xt.
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6.4.2 Proof of Proposition 6.1

Proof of Proposition 6.1. Denote the path measures for the reverse process (6.1.2)

and the sampling process (6.2.1) as Q and Q̂ respectively, i.e., Qt = Law(Yt), Q̂t =

Law(Ŷt). By the data-processing inequality, we have

KL(ϖt↘µ̂T↘t) = KL(QT↘t↘Q̂T↘t) ⇓ KL(Q[0,T↘t]↘Q̂[0,T↘t]).

By the Girsanov theorem [3], we have

KL(Q[0,T↘t]↘Q̂[0,T↘t])

= KL(Q0↘Q̂0) +

∫
T↘t

0
Eyt≃Qt


↘ŝ(yt, T ↓ t)↓ s(yt, T ↓ t)↘2


dt

= KL(ϖT↘N(0, I)) +
∫

T

t

Ext≃ωt


↘ŝ(xt, t)↓ s(xt, t)↘2


dt.

By the convergence of the OU process [3], we have

KL(ϖT↘N(0, I)) ⇓ e↘2T
KL(ϖ0↘N(0, I)).

The conclusion follows by combining the above relations.

6.4.3 Proof of Theorem 6.2

Proof of Theorem 6.2. Note the optimal solution is given by (6.2.3), i.e.,

s
↙
j
(x, t) = Ex→≃ωt


∝j log ϖt(x

⇒)
x⇒N r

j
= xN r

j


.

By (6.4.2), ϖt is
(
m+ 0

2
t

φ
2
t

)
-strongly log-concave, so that the conditional distribution

ϖt(x↘N r
j
|xN r

j
) is also

(
m+ 0

2
t

φ
2
t

)
-strongly log-concave. By the Poincaré inequality

[3],

s↙
j
(x, t)↓ sj(x, t)

2
L2(ωt)

= ExN
r
j
≃ωt


Ex→≃ωt

s↙
j
(x⇒, t)↓∝j log ϖt(x

⇒)
2

x⇒N r
j
= xN r

j



⇓ ExN
r
j
≃ωt

[(
m+

↽
2
t

⇁
2
t

)↘1

Ex→≃ωt

[∝↘N r
j
∝j log ϖt(x

⇒)

2

F

x⇒N r
j
= xN r

j

]]
.
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Here ↘·↘F denotes the Frobenius norm. By Theorem 6.1, it holds that

∝2
ij
log ϖt(x)


⇓ ⇓ ↽

2
t

⇁
2
t
(m⇁

2
t
+ ↽

2
t
)

(
1↓ m⇁

2
t
+ ↽

2
t

M⇁
2
t
+ ↽

2
t

)dG(i,j)

.

Since
∝2

ij
log ϖt(x)

2
F
⇓ dj↘∝2

ij
log ϖt(x)↘2⇓, we obtain that

Ex→≃ωt

[∝↘N r
j
∝j log ϖt(x

⇒)

2

F

 x⇒N r
j
= xN r

j

]

=
∑

i:dG(i,j)>r

Ex→≃ωt

∝2
ij
log ϖt(x

⇒)
2
F

 x⇒N r
j
= xN r

j



⇓ dj

∑

i:dG(i,j)>r

↽
4
t

⇁
4
t
(m⇁

2
t
+ ↽

2
t
)
2

(
1↓ m⇁

2
t
+ ↽

2
t

M⇁
2
t
+ ↽

2
t

)2dG(i,j)

.

Therefore,

∫
T

0

s↙
j
(x, t)↓ sj(x, t)

2
L2(ωt)

dt

⇓
∫

T

0



dj
∑

i:dG(i,j)>r

(
m+

↽
2
t

⇁
2
t

)↘1
↽
4
t

⇁
4
t
(m⇁

2
t
+ ↽

2
t
)
2

(
1↓ m⇁

2
t
+ ↽

2
t

M⇁
2
t
+ ↽

2
t

)2dG(i,j)


 dt

⇓ dj

⇓∑

k=r+1

|{i : dG(i, j) = k}|
∫ ⇓

0

↽
4
t

⇁
2
t
(m⇁

2
t
+ ↽

2
t
)
3

(
1↓ m⇁

2
t
+ ↽

2
t

M⇁
2
t
+ ↽

2
t

)2k

dt

⇓ dj max{1,m↘1} log κ
⇓∑

k=r+1

|{i : dG(i, j) = k}|(1↓ κ
↘1)2k.
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The last step uses Lemma 6.1. By the Abel transformation and the sparsity

assumption (2.1.3),

⇓∑

k=r+1

|{i : dG(i, j) = k}|(1↓ κ
↘1)2k

=
⇓∑

k=r+1

[
|N k

j
|↓ |N k↘1

j
|
]
(1↓ κ

↘1)2k

=
⇓∑

k=r+1

|N k

j
|

(1↓ κ

↘1)2k ↓ (1↓ κ
↘1)2(k+1)


↓ |N r

j
|(1↓ κ

↘1)2(r+1)

⇓ sκ
↘1(2↓ κ

↘1)
⇓∑

k=r+1

k
ε(1↓ κ

↘1)2k

⇓ 2sκ↘1(1↓ κ
↘1)2r

⇓∑

k=1

(k + r)ε(1↓ κ
↘1)2k.

By Lemma 3.6, it holds that
∑

k↓Z+
k
n
x
k ⇓ n!x(1↓ x)↘n↘1, so that

⇓∑

k=1

(k + r)ε(1↓ κ
↘1)2k =

⇓∑

k=1

(
1 +

r

k

)ε

k
ε(1↓ κ

↘1)2k

⇓ (r + 1)ε
⇓∑

k=1

k
ε(1↓ κ

↘1)2k

⇓ (r + 1)εϱ!(1↓ κ
↘1)2[1↓ (1↓ κ

↘1)2]↘ε↘1

⇓ (r + 1)εϱ!(1↓ κ
↘1)2κ2(ε+1)

.

Combining the above inequalities, we obtain

∫
T

t

s↙
j
(x, t)↓ sj(x, t)

2
L2(ωt)

dt

⇓
∫

T

0

s↙
j
(x, t)↓ sj(x, t)

2
L2(ωt)

dt

⇓ dj max{1,m↘1} log κ · 2sκ↘1(1↓ κ
↘1)2r · (r + 1)εϱ!(1↓ κ

↘1)2κ2(ε+1)

= Cdj(r + 1)ε(1↓ κ
↘1)2(r+1)

.

where we denote C = 2smax{1,m↘1}ϱ!κ2ε+1 log κ.
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The second claim follows from the property of conditional expectation:

↘sε,j(x, t)↓ sj(x, t)↘2
L2(ϑt)

= ↘uε,j(xN r
j
, t)↓ sj(x, t)↘2

L2(ϑt)

= Ex
N

r
j
↓ϑt


Ex→↓ϑt


↘uε,j(xN r

j
, t)↓ u

↔
j(xN r

j
, t) + u

↔
j(xN r

j
, t)↓ sj(x

↗
, t)↘2

x↗
N r

j
= xN r

j



= Ex
N

r
j
↓ϑt


↘uε,j(xN r

j
, t)↓ u

↔
j(xN r

j
, t)↘2



+ Ex
N

r
j
↓ϑt


Ex→↓ϑt


↘u↔

j(xN r
j
, t)↓ sj(x

↗
, t)↘2

x↗
N r

j
= xN r

j



= ↘sε,j(x, t)↓ s
↔
j(x, t)↘2

L2(ϑt)
+ ↘s↔j(x, t)↓ sj(x, t)↘2

L2(ϑt)
.

This completes the proof.

Lemma 6.1. Let κ = M/m ↑ 1 and k ↑ 1. It holds that

∫ ⇓

0

↽
4
t

⇁
2
t
(m⇁

2
t
+ ↽

2
t
)
3

(
1↓ m⇁

2
t
+ ↽

2
t

M⇁
2
t
+ ↽

2
t

)2k

dt ⇓ max{1,m↘1} log κ(1↓ κ
↘1)2k.

Proof. Denote φ =
↽
2
t

⇁
2
t

=
e↘2t

1↓ e↘2t
, then ⇁

2
t
=

1

1 + φ
and

dφ

dt
= ↓2φ(1 + φ). The

integral is

∫ ⇓

0

φ
2(1 + φ)2

(m+ φ)3

(
1↓ m+ φ

M + φ

)2k dφ

2φ(1 + φ)
=

∫ ⇓

0

φ(1 + φ)

2 (m+ φ)3

(
1↓ m+ φ

M + φ

)2k

dφ.

Let x = φ/m, and the integral can be bounded by

∫ ⇓

0

mx(1 +mx)

2 (m+mx)3

(
1↓ m+mx

M +mx

)2k

mdx

⇓ max{1,m}
2m

∫ ⇓

0

x

(1 + x)2

(
1↓ 1 + x

κ+ x

)2k

dx.
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Notice

1

(1↓ κ↘1)2k

∫ ⇓

0

x

(1 + x)2

(
1↓ 1 + x

κ+ x

)2k

dx

=

∫ ⇓

0

x

(1 + x)2

(
κ

κ+ x

)2k

dx

=

∫ ⇓

0

y

(κ↘1 + y)2

(
1

1 + y

)2k

dy

⇓
∫ ⇓

0

y

(κ↘1 + y)2

(
1

1 + y

)2

dy

<

∫
ς
↓1

0
κ
2
ydy +

∫ 1

ς↓1

dy

y
+

∫ ⇓

1

dy

y3

= 1 + log κ ⇓ 2 log κ.

The conclusion follows by combining the above inequalities.

6.4.4 Proof of Proposition 6.2

Proof of Proposition 6.2. The first equality directly follows from the definition

(6.2.6). Since only x0,N r
j
is involved, it su”ces to take expectation w.r.t. the

marginal distribution p(xN r
j
).

For the second inequality, notice

ϖt|0(xt,N r
j
|x0,N r

j
) = N(xt,N r

j
;↽tx0,N r

j
, ⇁

2
t
I).

It holds that

∝j log ϖt|0(xt,N r
j
|x0,N r

j
) = ↓⇁

↘2
t
(xt,j ↓ ↽tx0,j).

Note xt,N r
j
= ↽tx0,N r

j
+ ⇁t◁t ∈ ϖt|0(xt,N r

j
|x0,N r

j
) if ◁t ∈ N(0, Ir), so that

Ext,Nr
j
≃ωt|0(xt,Nr

j
|x0,Nr

j
)

[u◁,j(xt,N r
j
, t)↓∝j log ϖt|0(xt,N r

j
|x0,N r

j
)

2
]

= E⇁t≃N(0,I)

[u◁,j(↽tx0,N r
j
+ ⇁t◁t,N r

j
, t) + ⇁

↘1
t
◁t,j


2
]
.

This verifies the second inequality.

For the third inequality, we first claim that

u
↙
j
(xt,N r

j
, t) = ∝j log ϖt(xt,N r

j
). (6.4.3)
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Given this, the third inequality follows from the basic trick in denoising score

matching: take y = xt,N r
j
, z = x0,N r

j
and ϖ(y, z) = ϖt,0(xt,N r

j
, x0,N r

j
) in the following

identity:

Ez≃ω(z)Ey≃ω(y|z) ↘s◁(y)↓∝y log ϖ(y|z)↘2

= Ez≃ω(z)Ey≃ω(y|z)


↘s◁(y)↘2 ↓ 2(s◁(y))

T∝y log ϖ(y|z) + ↘∝y log ϖ(y|z)↘2


= Ez≃ω(z)Ey≃ω(y|z)


↘s◁(y)↘2 + 2tr (∝s◁(y)) + ↘∝y log ϖ(y|z)↘2



= Ey≃ω(y)


↘s◁(y)↘2 + 2tr (∝s◁(y)) + ↘∝y log ϖ(y)↘2


+ const

= Ey≃ω(y) ↘s◁(y)↓∝y log ϖ(y)↘2 + const.

Here the second inequality follows from integration by parts; in the third inequality,

we take

const = Ez≃ω(z)Ey≃ω(y|z) ↘∝y log ϖ(y|z)↘2 ↓ Ey≃ω(y) ↘∝y log ϖ(y)↘2 ,

which is independent of 6; the last equality follows from the same integration by

parts trick.

It then su”ces to prove (6.4.3). Note that

u
↙
j
(xt,N r

j
, t) = Ex

→
t≃ωt


sj(x

⇒
t
, t)

x⇒t,N r
j
= xt,N r

j



=
1

ϖt(xN r
j
)

∫
∝j log ϖt(xt,N r

j
, xt,↘N r

j
)ϖt(xt,N r

j
, xt,↘N r

j
)dxt,↘N r

j

=

∫
∝jϖt(xt,N r

j
, xt,↘N r

j
)dxt,↘N r

j∫
ϖt(xt,N r

j
, xt,↘N r

j
)dxt,↘N r

j

.

Since

ϖt(xt) =

∫
N(xt;↽tx0, ⇁

2
t
I)ϖ0(x0)dx0.

̸ ∝jϖt(xt) =

∫ 
↓⇁

↘2
t
(xt,j ↓ ↽tx0,j)


N(xt;↽tx0, ⇁

2
t
I)ϖ0(x0)dx0.

So that

u
↙
j
(xt,N r

j
, t) =

∫ 
↓⇁

↘2
t
(xt,j ↓ ↽tx0,j)


N(xt;↽tx0, ⇁

2
t
I)ϖ0(x0)dx0dxt,↘N r

j∫
N(xt;↽tx0, ⇁

2
t
I)ϖ0(x0)dx0dxt,↘N r

j

=

∫ 
↓⇁

↘2
t
(xt,j ↓ ↽tx0,j)


N(xt,N r

j
;↽tx0,N r

j
, ⇁

2
t
I)ϖ0(x0,N r

j
)dx0,N r

j∫
N(xt,N r

j
;↽tx0,N r

j
, ⇁

2
t
I)ϖ0(x0,N r

j
)dx0,N r

j

.
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On the other hand,

∝j log ϖt(xt,N r
j
)

=
∝jϖt(xt,N r

j
)

ϖt(xt,N r
j
)

=

∫
∝jN(xt,N r

j
;↽tx0,N r

j
, ⇁

2
t
I)ϖ0(x0,N r

j
)dx0,N r

j∫
N(xt,N r

j
;↽tx0,N r

j
, ⇁

2
t
I)ϖ0(x0,N r

j
)dx0,N r

j

=

∫ 
↓⇁

↘2
t
(xt,j ↓ ↽tx0,j)


N(xt,N r

j
;↽tx0,N r

j
, ⇁

2
t
I)ϖ0(x0,N r

j
)dx0,N r

j∫
N(xt,N r

j
;↽tx0,N r

j
, ⇁

2
t
I)ϖ0(x0,N r

j
)dx0,N r

j

= u
↙
j
(xt,N r

j
, t).

This completes the proof.

6.4.5 Proof of Theorem 6.3

Proof of Theorem 6.3. By the Pythagorean equality (6.2.5),

Ext≃ωt


↘ŝ(xt, t)↓ s(xt, t)↘2



=
b∑

j=1

Ext≃ωt


↘ŝj(xt, t)↓ sj(xt, t)↘2



=
b∑

j=1

Ext≃ωt

ŝj(xt, t)↓ s
↙
j
(xt, t)

2

+

b∑

j=1

Ext≃ωt

s↙
j
(xt, t)↓ sj(xt, t)

2

.

Combining Proposition 6.1 and Theorem 6.2, we obtain

KL(ϖt↘µ̂T↘t) ⇓ e↘2T
KL(ϖ0↘N(0, I)) +

∫
T

t

Ext≃ωt


↘ŝ(xt, t)↓ s(xt, t)↘2


dt

= e↘2T
KL(ϖ0↘N(0, I)) +

∫
T

t

Ext≃ωt


↘s↙(xt, t)↓ s(xt, t)↘2


dt+R

⇓ e↘2T
KL(ϖ0↘N(0, I)) + Cd(r + 1)εe↘c(r+1) +R,

where we denote

R =
b∑

j=1

Rj, Rj =

∫
T

t

Ext≃ωt

ŝj(xt, t)↓ s
↙
j
(xt, t)

2

dt.

By Proposition 6.2, Rj is the j-th component loss of the score function when we

use a standard di!usion model to approximate the marginal distribution ϖ0(xNr
j
).

Note one can use the same constructive solution as in [84] for the marginal target

132



ϖ0(xN r
j
) with only the j-th component output as the constructive solution for ŝj,

and the statistic error analysis similarly applies.

Therefore, we can take the same hyperparameters as in [84]:

L
j = O(log4 nj),

Wj

⇓ = O(nj log

6
nj), S

j = O(nj log
8
nj), B

j = n
O(log log nj)
j

,

where nj = N
↘dj/(2↽+dj). Note n,N in our paper correspond to N, n in [84]

respectively. Similarly for the time interval choices: t = O(N↘k) for some k > 0

and T ℑ logN . The j-th component loss Rj is smaller than the overall score

matching loss, which is further bounded in Theorem 4.3 in [84]:

E{X(i)}Ni=1
[Rj] ⇓ C

⇒
N

↘ 2ς
dj+2ς log16N.

Therefore,

E{X(i)}Ni=1
[R] =

b∑

j=1

E{X(i)}Ni=1
[Rj] ⇓ C

⇒
bN

↘ 2ς
de!+2ς log16N.

This completes the proof.
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Chapter 7

Conclusions and Future Work

In this thesis, we presented a comprehensive study of the theory and numerical

methods for localized sampling in high dimensions by leveraging locality structure.

Our main contributions are twofold:

1. Marginal Stein’s method. We developed a new analysis method for localized

distributions, deriving a dimension-independent marginal transport inequality

and rigorous proofs of exponential correlation decay. These results clarify how

sparse dependencies control the propagation of errors and form the foundation

for localization methods in sampling.

2. Localized sampling algorithms. Motivated by the theoretical insights, we for-

mulated a general framework to reduce global samplers into a collection of

low-dimensional, neighborhood-based samplers. Our study of MALA-within-

Gibbs and localized di!usion models demonstrates that localization can greatly

reduce both computational cost and sample complexity without sacrificing

accuracy, making them potentially more e”cient for large-scale applications.

By combining rigorous theory with practical algorithm design, this thesis laid

the groundwork for a new class of sampling methods that can overcome the curse

of dimensionality. Beyond these studies, the marginal Stein’s method o!ers a

new tool for analyzing more sampling or variational algorithms for problems with

locality structures. The localization framework also brings new methods for scalable

inference in graphical models, spatiotemporal processes, and large-scale Bayesian

inverse problems.

Building on the results of this thesis, there are several future research directions:

• Adaptive localization. Design sampling algorithms that adaptively learn the
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locality structure. This broadens the applications of localization to problems

with unknown or dynamic dependencies.

• Multiscale generalization. Combine localization with global dimension reduc-

tion techniques.

• Applications to deep generative models. Understand how locality structures

in the data distribution or the neural network architecture can be exploited to

improve the learning and generation performance of deep generative models.

We believe that the localization framework will continue to inspire new theoret-

ical insights and practical algorithms for high-dimensional sampling problems, and

we are excited to see how it develops in the future.
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